
Redesigning a Tagless Access Buffer
to Require Minimal ISA Changes

Carlos Sanchez,
Peter Gavin

Florida State University, USA
[sanchez,gavin]@cs.fsu.edu

Daniel Moreau
Chalmers University of
Technology, Sweden

moreaud@chalmers.se

Magnus Själander
NTNU, Norway

Uppsala University, Sweden
magnus.sjalander@idi.ntnu.no

David Whalley
Florida State University, USA

whalley@cs.fsu.edu

Per Larsson-Edefors
Chalmers University of
Technology, Sweden

perla@chalmers.se

Sally A. McKee
Chalmers University of
Technology, Sweden

mckee@chalmers.se

ABSTRACT
Energy efficiency is a first-order design goal for nearly all
classes of processors, but it is particularly important in mo-
bile and embedded systems. Data caches in such systems
account for a large portion of the processor’s energy us-
age, and thus techniques to improve the energy efficiency
of the cache hierarchy are likely to have high impact. Our
prior work reduced data cache energy via a tagless access
buffer (TAB) that sits at the top of the cache hierarchy.
Strided memory references are redirected from the level-one
data cache (L1D) to the smaller, more energy-efficient TAB.
These references need not access the data translation looka-
side buffer (DTLB), and they can avoid unnecessary trans-
fers from lower levels of the memory hierarchy. The origi-
nal TAB implementation requires changing the immediate
field of load and store instructions, necessitating substan-
tial ISA modifications. Here we present a new TAB design
that requires minimal instruction set changes, gives software
more explicit control over TAB resource management, and
remains compatible with legacy (non-TAB) code. With a
line size of 32 bytes, a four-line TAB can eliminate 31% of
L1D accesses, on average. Together, the new TAB, L1D,
and DTLB use 22% less energy than a TAB-less hierarchy,
and the TAB system decreases execution time by 1.7%.

CCS Concepts
•Computer systems organization → Architectures;
•Hardware → Power and energy; •Software and its
engineering → Compilers;

Keywords
energy efficiency, memory hierarchy, strided access

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CASES ’16, October 01-07 2016, Pittsburgh, PA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4482-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2968455.2968504

1. INTRODUCTION
Mobile and embedded devices must operate under strict

energy-usage constraints. Power expenditure affects not only
battery lifetime and temperature but also performance: for a
given power ceiling, processors using less power can be made
to run faster. In many systems, the level-one data cache
(L1D) accounts for up to 25% of a processor’s total power
draw [6, 8]. Decreasing the number of L1D accesses saves
energy in the cache as well as in the data translation looka-
side buffer (DTLB). Avoiding unnecessary transfers between
levels of the cache hierarchy further reduces energy usage.

Our prior work introduces a small, power-efficient struc-
ture — the tagless access buffer (TAB) — into the cache
hierarchy to reduce L1D and DTLB energy dissipation [3].
The compiler recognizes memory references that are accessed
with a constant stride or whose addresses are loop-invariant,
and it generates instructions to redirect such references to
the TAB. Many applications spend most of their time in
loops, and so capturing these references in the smaller, more
power-efficient TAB yields significant energy savings.

The drawback to the original TAB framework [3] is that
it necessitates substantial changes to the ISA: all load and
store instructions must be modified, and two additional op-
codes are required. We present a new TAB system in which
the only ISA requirement is one free opcode for the two in-
structions that allocate and deallocate TAB entries. These
two instructions — gtab (get TAB entry) and rtabs (release
TAB entries) — explicitly manage the TAB, and thus load
and store instructions need not be modified.

With 32-byte lines, a four-line TAB eliminates 31% of the
L1D accesses, on average. Our new design achieves 72%
of the original TAB’s energy benefits while reducing ISA
changes to the addition of a single opcode. Furthermore, our
new TAB system can execute legacy non-TAB code, which
was not possible with the original TAB.

2. THE NEW TAB SYSTEM
The TAB holds cache lines inclusive to the L1D. Figure 1

illustrates its position in the memory hierarchy. Rather than
using hardware to predict the best lines to move, the com-
piler generates special instructions to explicitly move lines
from the L1D to the TAB. We use “TAB” to refer to the
whole buffer and “TAB entry” to refer to an individual en-
try and its associated line within the buffer.

Register File

TAB

L1D DTLB

L2, L3, and Memory

Figure 1: References that hit in the TAB (which sits between
the L1D cache/DTLB and the register file) save energy by
removing the need to access the cache and DTLB.

int a[1000];

for (i=0; i<n; i++)

 sum += a[i];

(a) original loop

L1:

 r[2]=M[r[7]]; # load a[i] value

 r[3]=r[3]+r[2]; # add value to sum

 r[7]=r[7]+4; # calc addr of a[i+1]

 PC=r[7]<r[6],L1; # goto L1 if &a[i+1]<&a[n]

(b) compiler-generated RTL instructions

L1:

 r[2]=M[r[7]];

 r[3]=r[3]+r[2];

 r[7]=r[7]+4;

 PC=r[7]<r[6],L1;

 gtab T[1],r[7],4

 rtabs T[1]

(c) RTL with compiler-generated TAB instructions

Figure 2: This example (adapted from our previous work [3])
shows how the compiler generates code for a constant-stride
loop both without and with TAB references.

The compiler detects loop memory references that have
invariant addresses or constant strides, and it generates one
or more gtab instructions to capture these in the TAB. The
gtab instruction associates the base register of the captured
memory references with the specified TAB entry. Memory
references with this register are directed to the TAB instead
of the L1D, and only references associated with the TAB
entry are allowed to use this register within the loop. We
track register associations in hardware, and since the base
register is already a field in memory references, we need not
alter the ISA’s existing instructions.

Figure 2(a) gives a high-level example of how TAB in-
structions are generated for a simple loop iterating over the
elements of the integer array a[]. Figure 2(b) shows the
generated instructions in RTL (register transfer list) format,
which has a one-to-one correspondence with MIPS assembly
instructions. The compiler detects that memory reference
r[2]=M[r[7]] is accessed with a constant stride due to the
addition r[7]=r[7]+4. Figure 2(c) shows the gtab instruc-

prefetch

5 1 2 3 4

Figure 3: This example shows sequential accesses that hit
in the TAB. Reference #4 accesses the last slot in the TAB
line, which invokes a prefetch from the L1D.

tion the compiler generates before the loop and the rtabs

instruction it generates after. The gtab tells the processor
to associate register r[7] with TAB entry T[1]. Each mem-
ory reference using r[7] will now access this TAB entry.
Addresses to prefetch are calculated with stride four. The
rtabs instruction releases T[1], which disassociates register
r[7] from the TAB entry.

Figure 3 gives an example of a TAB line access pattern.
To prepare for the first TAB reference, the gtab instruc-
tion prefetches the line from the L1D. TAB references with
constant strides cause a prefetch when the next reference ad-
dress (calculated from the stride) crosses the line boundary.
Since the next TAB reference address is always known, L1D
tag checks and DTLB accesses for each reference become un-
necessary. The sequential references continue to access the
TAB until an rtabs instruction deallocates the TAB entry
and removes the base register association.

The gtab instruction also communicates other access pat-
tern information (type info) that can be used to further re-
duce energy. For instance, for access patterns overwriting
all bytes in a line, we need not fetch data from the L1D.
Section 3.1 describes the type info and how it is used.

3. SUPPORT FOR TAB OPERATION
We next describe the necessary hardware for TAB sup-

port. Section 3.1 describes the hardware structures in the
new TAB design. Section 3.2 describes the fields of the two
new instructions, and Section 3.3 describes the few, small
L1D changes required for TAB support.

3.1 TAB Organization
Figure 4 gives an overview of our TAB organization. The

register array stores the base register number for each TAB
entry. The TAB valid window array is a circular buffer indi-
cating which TAB entries are valid within the current func-
tion’s context. The register array and TAB valid window
are used to determine which TAB entry, if any, is associated
with a given access. The base register of the memory refer-
ence is compared in parallel with all register array entries.
The results are anded with the bits in the current TAB valid
window. If the base register matches a valid TAB entry, that
entry is accessed on the next cycle. Section 4.2 describes how
the TAB valid window supports function calls.

Each TAB entry includes several metadata fields. The
index associates a TAB entry with a data line in the buffer.
Each line in the buffer also has metadata specific to the data
it holds. A single TAB entry may be linked to two lines, each
with its own metadata, and a line may be shared by multiple
TAB entries. Figure 5 shows an expanded view of both sets
of metadata. Field widths in our implementation are given
on top (these numbers may differ in other systems).

Register Array
IF/ID ID/EX

= = = =

Valid Window Array

(Circular Buffer)

W
in

d
o

w
s

 Base

Register

Number

5 5 5 5

1 1 1 1

5

1 1 1 1

2

Convert To

 Address
1

1

1

1

 TAB

Number

All Zero1

Access

 L1D

TAB Metadata Index TAB Line Buffer Metadata

2 2

Figure 4: In this TAB hardware overview, the pillars represent pipeline registers between stages, and the small numbers
indicate bit widths of the lines. The “=” gates are comparators, and the “Convert to Address” demultiplexer converts a field
with a single bit set to a proper two-bit address. If all bits are zero, the “L1D Access” control signal directs the memory
reference to cache.

Figure 5(a) shows the TAB metadata, which include the
type info, prefetch type, prefetch PC, stride, index, and extra
line fields. Fields that are new compared to the original TAB
metadata [3] are depicted in bold. The type info bits control
how data are transferred from the L1D to the TAB [3] (to
save energy). The two-bit prefetch type indicates whether
all loads, all stores, no references within the loop, or a single
reference should trigger a prefetch. For instance, if the “all
loads” case is indicated, any load directed to this TAB entry
performs the prefetch check (but will not necessarily trigger
a prefetch). If “no references within the loop” is set, the
address is loop invariant, and the gtab instruction performs
the only prefetch. If a single instruction causes a prefetch
and the prefetch PC field matches the least significant bits
of the current program counter, then a prefetch check is
done. If the prefetch type is met and the stride plus the
current reference’s address crosses the line boundary, the
TAB prefetches the next line. The index field determines
which of the four line buffers is associated with this TAB
entry. This lets multiple TAB entries share the same line.
Finally, if the extra line bit is set, the current TAB line and
the next line are allocated to a single TAB entry.

The compiler allocates an extra line when multiple refer-
ences are directed to a TAB entry, are accessed out of order,
and span two lines. Instead of prefetching back and forth,
which wastes energy, we use two lines and prefetch only the
line needed next. The TAB register array associates base
registers with the first TAB line of the pair, and the least sig-
nificant bit of the L1D set field determines which line to use.

Figure 5(b) shows the line buffer metadata, which includes
the valid, fetched, PPN (physical page number), PP (page
protection), line number, way, dirty, write mask, and shared
count fields. The valid bit for the TAB entry is separate from
the buffer valid bit. If the line is evicted from the L1D or
the page table is updated, the buffer’s valid bit gets cleared.
The next access to the TAB initiates a line fetch that causes
both the L1D and DTLB to be accessed. The fetched bit

ty
pe

 in
fo

pr
ef

et
ch

 ty
pe

pre
fe

tc
h P

C

st
rid

e

in
de

x

ex
tra

 li
ne

2 2 10 8 2 1

(a) TAB metadata

va
lid

fe
tc
he

d
PPN PP

lin
e

nu
m

be
r

w
ay

di
rty

w
rit

e
m

as
k

s
h
a
re

d
 c

o
u
n
t

1 1 20 4 7 2 1 32 2

pr
ef

et
ch

 ty
pe

(b) line buffer metadata

Figure 5: The TAB tracks metadata to ensure correct,
energy-efficient operation (fields that differ from the orig-
inal TAB [3] are labeled in bold).

gets set when a line arrives from the L1D (so prefetches must
first clear this bit). Any access to a TAB entry for which the
fetched bit is not set stalls until the data arrive. The PPN
and line number make up the high-order bits of addresses
being directed to a TAB line. On a prefetch, the PPN field
is prepended to the next sequential line number and used
to directly access the L1D (removing the need for a DTLB
lookup). The DTLB must only be accessed when the PPN
field is updated, as with a gtab instruction or a prefetch that
crosses a page boundary, both of which infrequently occur.
The PP bits are used to enforce the proper page permissions
(again avoiding DTLB accesses).

On a page table update, the mechanism that updates the
DTLB also invalidates all TAB entries. This policy negli-
gibly impacts performance, since page table updates infre-
quently happen. The line number and way fields together
give the L1D location of the line being used in the TAB.

opcode register stride
 shift

size
type L/S prefetch offset G

6 5 4 2 3 2 9 1

(a) gtab instruction

opcode
release

indices
G

6 4 1

(b) rtabs instruction

Figure 6: The two new TAB instructions share an opcode,
but the gtab instruction requires more fields than the rtabs

instruction.

This enables memory references not directed to the TAB
but sharing the same line to determine which TAB entry
holds the line (Section 3.3 discusses how we handle such
interfering accesses). We use these fields to reduce energy
overheads when the TAB performs an L1D writeback, since
we need not perform an L1D tag check. The dirty bit and
write mask control how data are written back to the L1D.
The dirty bit simply states that the data in the TAB line
differ from those in the L1D and must be written back when
the TAB line is invalidated or evicted. The write mask in-
dicates which bytes have been altered; only dirty bytes are
written back to the L1D. Finally, the shared count records
the number of TAB entries mapping to the associated line.

3.2 ISA Modifications
The ISA must be updated to support the TAB, but the

two needed TAB operations can be represented using a single
opcode that has a one-bit field to differentiate between gtab

and rtabs. Figure 6 shows the instruction formats for a
MIPS-like 32-bit ISA.

The gtab instruction format depicted in Figure 6(a) has
no immediate field. In order to properly perform the first
prefetch on the execution of a gtab (pulling the first L1D
line into the TAB), the specified register must contain the
address for the first reference. This requirement sometimes
causes the compiler to generate a few additional instructions
to add an offset to the register before the gtab instruction,
but these instructions are outside the loop and negligibly
impact performance.

In order to support a wider range of values, the access
stride is calculated as the gtab field’s stride � shift size.
For instance, assuming a four-byte integer, the stride when
accessing an integer array is always a multiple of four. We
can thus set the shift size to two and use the four bits of the
stride field for the upper bits of the actual stride.

The type information is a combination of the TAB meta-
data’s two-bit type-info field and one-bit extra-line field.
The L/S field specifies the prefetch scheme described above,
and the prefetch offset is multiplied by the instruction width
and added to the current PC to generate the prefetch PC in
the TAB metadata. The signed nine-bit prefetch offset limits
the distance between the gtab and the prefetching reference
instruction: this is why the prefetch PC field only needs ten
bits. The G bit differentiates gtab and rtabs instructions.
Figure 6(b) depicts the rtabs instruction format, which only
has a bitfield to indicate which TABs to deallocate.

3.3 L1D Changes
Inclusion requires that a TAB line be evicted when its cor-

responding line is evicted from the L1D. To avoid checking
all TAB line numbers against the L1D line number on every
eviction, we extend each L1D line with T and I bits. The
T bit specifies whether this line resides in the TAB, and the
I (intercept) bit specifies whether non-TAB accesses to this
line should be directed to the TAB. The T bit is used to
maintain inclusion: only evicted L1D lines with their T bits
set will trigger an invalidation of the TAB line buffer. The
L1D line number and way are compared to each TAB entry
to determine which line buffer to invalidate. Since the TAB
is small, evictions requiring an invalidation are infrequent,
and the overhead of performing these checks is manageable.

If a normal (non-TAB) load or store accesses an L1D line
that also resides in the TAB, it may need to be redirected
to the TAB line instead (because the TAB has the most
recent version). Such interference infrequently occurs, but
when it does the data must be read on the following cycle,
as we must now wait for the TAB access. Normally we
would be able to use the T bit to indiscriminately redirect
these references, but some TAB lines are guaranteed not to
interfere with regular loads and stores when the compiler
can determine that no other memory references access the
same bytes within the line (i.e., to avoid false interferences).
Thus, we use a separate I bit to specify the lines for which
regular references should be directed to the TAB. The TAB
sets the I bits based on the TAB entry’s type info metadata.

4. TAB OPERATIONS
We next describe TAB allocation and deallocation, actions

required on function calls, and prefetching.

4.1 TAB Allocation and Deallocation
All TAB entries are initially invalid across all windows.

When a gtab instruction is executed, it allocates the spec-
ified TAB entry by prefetching the first line to be accessed
and marking the TAB entry as valid. The register array is
updated to associate the register given in the gtab instruc-
tion with the specified TAB entry. If the TAB entry to be
allocated is already marked valid, the existing TAB entry
must first be deallocated. Deallocation normally requires
that associated dirty line(s) in the buffer be flushed back to
the L1D and that the TAB entry be marked invalid. In the
case of a deallocation triggered by a gtab, the TAB entry
stays valid. When flushing the line, the write mask meta-
data field tells the TAB which bytes to update in the L1D.
The rtabs instruction is used to explicitly deallocate one or
more TAB entries. No action is required for invalid TAB
entries specified in the rtabs instruction.

4.2 Function Call Support
Since TAB entries are associated with registers, they can-

not remain live across function calls. The base register may
be the same, but the actual address will almost certainly
be different, and thus memory references would access the
wrong line if directed to a TAB entry from a previous func-
tion. To avoid this problem, the TAB valid window circular
buffer behaves similarly to a set of register windows. The
buffer has a number of windows (our implementation uses
eight), each having a bit per TAB entry to indicate which
entries are valid for that window. Function calls shift the
current window pointer forward; returns shift it backward.

A() {

 // allocate TABs T[0], T[1], T[2]

 // window in #1 valid

 B();

 // window in #3 valid

 // release TABs T[0], T[1], T[2]

}

B() {

 // allocate TAB T[0]

 // window in #2 valid

 // release TAB T[0]

}

call

return

T[0]

T[1]

T[2]

T[3]

...

#1 #2 #3

1

1

1

0

0

0

0

0

0

0

0

0

0

1

1

0

1

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

Figure 7: This figure shows the circular buffer that imple-
ments the TAB valid window. The current window (high-
lighted) advances on a function call and moves back on the
return.

With this windowing system, a new set of valid bits is used
per function call. Only the valid bits are unique per call —
TAB metadata and line buffers are unaltered. A TAB entry
can only be valid in one window because allocating that
entry in a different window overwrites the metadata and
line buffer. The valid window enables TAB entries not used
in new function calls to remain active upon return, whereas
those used in the function are invalidated.

Figure 7 gives an example of window system operation.
Figure 7(a) shows the TAB operations of two functions, A()
and B(). A() requests TAB entries T[0], T[1], and T[2]

and then calls B(), which only requests TAB entry T[0].
Figure 7(b) depicts the TAB valid window structure at dif-
ferent points during execution. Just before the call to B(),
the highlighted window shown in #1 is current, and TAB
entries zero, one, and two are valid for that window. After
B() allocates TAB entry T[0], the valid bit is cleared for
that TAB entry across all windows and then set in the cur-
rent window (#2 in the figure). Recall that deallocating a
TAB entry clears the valid bit for that entry. This ensures
that TAB entries are only valid in at most one window. Af-
ter B() returns, memory references in A() may continue to
use TAB entries T[1] and T[2].

When the window advances, all entries are invalidated in
the new window. This avoids conflicts when function call
stacks are deep enough to wrap and reuse a window.

4.3 Prefetches
The TAB prefetches a line from the L1D upon the exe-

cution of a gtab instruction or when a TAB entry’s access
pattern is about to cross the line boundary. This means that
the data will usually be ready when the next TAB memory
reference needs it. After the gtab instruction executes, sub-
sequent prefetches are automatically performed based on the
pattern specified in the prefetch type metadata field (Fig-
ure 5(a)). If there is a dirty line already associated with
a TAB entry at the point of a prefetch, the original line
is flushed before the new line is loaded. Recall that each
successive address is calculated by adding the stride to the
current address. If the line number portion of the calculated
address differs from that of the current TAB line, a prefetch
is triggered. Note that this address calculation requires only
a small adder, as we need only check the final carry out from

the line offset. This calculation is only performed for TAB
references that fulfill the prefetch condition specified by the
prefetch type.

As noted in Section 3.1, the prefetch type field indicates
whether the TAB entry should perform a prefetch check on
all loads, all stores, all of both, or a single reference. Note
that if the compiler cannot determine that the access pattern
fits one of these prefetch modes, it will not generate TAB
instructions, as it cannot ensure correct execution.

If the TAB entry is set to perform the prefetch check for
a single reference, the TAB uses the prefetch PC metadata
field to determine whether to do the prefetch check for the
current reference. Executing a gtab instruction calculates
this field by multiplying the given offset (which the compiler
calculates as the number of machine instructions between
the gtab and the prefetch reference) by the instruction width
(here, four bytes) and adding that to the current PC.

Using the TAB saves energy because accesses to it not
only avoid L1D accesses, but also trigger fewer DTLB ac-
cesses than accesses to the L1D. Executing a gtab instruc-
tion causes the TAB to access the DTLB to get the PPN
to store in the TAB metadata. Thereafter, only TAB refer-
ences whose prefetches cross a page boundary need to access
the DTLB, which rarely happens.

TAB entries use their index metadata field to access the
line buffer. This indirection enables multiple TAB entries
to map to the same line buffer. Prefetches thus first check
the line number to fetch against valid lines already in the
TAB. On a match, the TAB sets the index to point to the
matching line. Otherwise, the TAB allocates a new line and
sets the index accordingly. Even though line buffer meta-
data are shared among all TAB entries that map to a given
line, TAB metadata remain unique to each entry. The TAB
tracks the number of entries that map to each line. If mul-
tiple TAB entries point to the same line buffer and one en-
try requests a prefetch, that TAB entry decrements the line
buffer’s counter and prefetches into a new TAB line. A dirty
line is not flushed back to the L1D until its counter is zero.

5. COMPILER ANALYSIS
The compiler needs no additional code transformations or

interprocedural analyses to support the TAB; it just needs
the number of TAB entries and the L1D line size to know
how many TAB entries it can use within a loop nest and
whether the stride fits within a line. The compiler detects
memory references with loop-invariant addresses or constant
strides. It inserts a gtab before a loop containing such refer-
ences and an rtabs after. If they are not already present, the
compiler generates loop preheader and postheader blocks for
these instructions. Additional arithmetic instructions may
be needed in the preheader to store the calculated initial
address in the base register used by the gtab. Since these
instructions are outside the loop, they have negligible perfor-
mance impact. Figure 8 gives the algorithm for generating
TAB instructions in both the old and new TAB systems.

5.1 References with Constant Strides
Constant-stride memory references have the form M[reg]

or M[reg+disp], where updates to reg follow the pattern
reg = reg ± constant, and disp is a displacement off the
address in reg. The latter pattern arises from applying in-
duction variable analysis to regular data access patterns. For
instance, sequentially accessing every element in an integer

FOR (each loop in function sorted by innermost first) DO

 FOR (each load/store in the loop) DO

 IF (reference has constant stride OR

 has a loop-invariant address) THEN

 IF (reference offset and base register allow it

 to be added to existing TAB) THEN

 Merge reference with existing TAB;

 ELSE

 Assign new TAB to reference;

 FOR (each TAB created) DO

 IF (TAB base register used elsewhere) THEN

 Remove TAB;

 IF (too many TABs) THEN

 Select TABs with most estimated references;

FOR (each TAB in function) DO

 Generate GTAB instruction in loop preheader;

FOR (each loop in function) DO

 IF (TABs associated with loop) THEN

 Generate RTABS instruction in loop postheader;

Figure 8: This pseudocode outlines the compiler algorithm
for deciding when to allocate/deallocate TAB entries.

array generates the constant-stride pattern reg = reg + 4

(assuming a four-byte integer). When the compiler detects
a memory reference with an appropriate access pattern, it
tries to allocate it to a TAB entry.

The requirements to allocate a single strided reference to
a TAB entry are as follows:

1. The reference must be in a loop and must have a con-
stant stride.

2. The reference must be in a basic block that is executed
exactly once per loop iteration (due to the prefetch
system). If the TAB line is not accessed on every iter-
ation, the TAB may miss a prefetch and use the wrong
line for the next access.

3. The stride must be less than or equal to half the L1D
line size (otherwise using the TAB yields no energy
benefits).

4. The base register of the reference must not be used
as a base register in any other memory references not
associated with the TAB entry within the loop.

Multiple references can be directed to a single TAB entry,
provided they follow a few rules:

1. All references must be in the same loop.
2. All references must have the same constant stride.
3. All references must share the same base register (so

that they are directed to the same TAB entry).
4. The reference(s) causing the prefetch must occur ex-

actly once per loop iteration (much like TAB entries
with a single reference).

5. The absolute value of the stride must be no larger than
the L1D line size.

6. The maximum distance between any two references
cannot be larger than the L1D line size.

This happens, e.g., in loop unrolling, which causes a single
memory reference in the original loop to occur k times in the
unrolled loop (so k is the unrolling factor). They all access
the same structure, and assuming the original loop memory
references have a constant stride, the multiple references also
have constant strides. Sometimes a set of references can span
two cache lines (e.g., due to an out-of-order access pattern),

in which case the compiler sets the extra line field of the
gtab instruction to indicate that this TAB entry requires
two lines instead of one. The lowest bit of the index portion
of the reference address is then used to direct references to
the proper line within the buffer.

There are cases in which an extra line is unnecessary for
a TAB entry with multiple references. If the references are
accessed in order and in the same direction as the stride, and
if the distance between each reference is the same (includ-
ing the distance between the last reference in one iteration
and the first in the next), a single TAB line buffer can be
used — this case is no different from a single reference with
a constant stride. Figure 9 illustrates an example of loop
unrolling and of how the TAB can capture multiple refer-
ences. Figure 9(a) shows code that sums the elements of
an integer array, Figure 9(b) shows the loop after unrolling,
and Figure 9(c) shows the generated instructions. Note that
because the first reference has an offset, we must generate
instructions to store that address in r[6] before emitting
the gtab instruction.

int a[1000];

for (i=0; i<n; i++) {

 sum += a[i];

}

(a) original summation loop

int a[1000];

for (i=0; i<n; i+=4) {

 sum += a[i];

 sum += a[i+1];

 sum += a[i+2];

 sum += a[i+3];

}

(b) after loop unrolling

 r[6]=r[6]-12; #calculate base register

 #allocate T[1], stride=4

 r[6]=r[6]+12;

L1: r[2]=M[r[6]-12]; #T[1] load+prefetch

 r[3]=M[r[6]-8]; #T[1] load+prefetch

 r[4]=M[r[6]-4]; #T[1] load+prefetch

 r[5]=M[r[6]]; #T[1] load+prefetch

 r[7]=r[7]+r[2]; #update sum variable r[7]

 r[7]=r[7]+r[3];

 r[7]=r[7]+r[4];

 r[7]=r[7]+r[5];

 r[6]=r[6]+16;

 PC=r[6]<r[8],L1; #loop condition

 gtab T[1],r[6],4;

 rtabs T[1];

(c) unrolled loop references directed to TAB

Figure 9: This figure shows how a loop (a) is unrolled by a
factor of four (b) and gives the RTL representation of the
instructions the compiler generates to capture the loop ref-
erences in the TAB (c) (example adapted from our previous
work [3]).

5.2 References with Loop-Invariant Addresses
Although loops containing references with loop-invariant

addresses are uncommon, the potential energy benefits from
directing them to the TAB are large. TAB entries allocated
for these types of references trigger at most one prefetch and
one writeback, requiring only one DTLB and at most two
L1D accesses. Depending on the access type stored in the
type info metadata, only one L1D access may be needed.
Figure 10 gives example code that allocates a TAB entry
for a reference with a loop-invariant address. Figure 10(a)

shows a loop with a function call to scanf(), which prevents
the global variable sum from being stored in a register. Fig-
ure 10(b) shows the generated instructions, where sum has
been allocated to a TAB entry. Notice that no reference
causes a prefetch. The variable n is not allocated a TAB
entry because its address is passed to another function.

sum = 0; //global variable

while (scanf("%d", &n)) {

 sum += n;

}

(a) original loop

 r[14]=sum;

 gtab T[1],r[14],0

 M[r[14]=0; #TAB T[1] store

 PC=L4;

L2: r[3]=M[r[20]+n];

 r[5]=M[r[14]]; #TAB T[1] load

 r[5]=r[5]+r[3];

 M[r[14]]=r[5]; #TAB T[1] store

L4: . . .

 r[5]=r[29]+n;

 ST=scanf;

 PC=r[2]!=r[0],L2;

 rtabs T[1]

 gtab T[1],r[14],0;

 rtabs T[1];

(b) instructions when using the TAB

Figure 10: This example shows how the TAB is used for
a loop-invariant memory addresses. The code at the top
shows a sample loop, and code at the bottom shows the RTL
representation of the instructions the compiler generates for
the TAB system (figure adapted from our previous work [3]).

5.3 TAB Allocation Heuristics
Loop nests often have the potential to allocate more TAB

entries than the hardware supports. In such cases, the com-
piler chooses the subset of memory references that are likely
to be most profitable. As in the original TAB system [3], we
identify these references by estimating the number of L1D
accesses that could be avoided per loop iteration. Since the
number of iterations is usually unknown at compile time, we
exclude it from the calculation. This metric is calculated by
the following equation:

estimated saved-references− (L1D loads+ L1D writes)

#TAB lines
(1)

6. EVALUATION FRAMEWORK
In order to compare our results to those of our original

TAB system, we again use the VPO compiler [5] and Sim-
pleScalar simulator [1]. VPO produces MIPS/PISA target
code and performs the analysis to generate the additional
gtab and rtabs instructions. We use a SimpleScalar config-
uration that models a timing-accurate, five-stage, in-order
pipeline. Table 1 gives details for this processor configura-
tion. We choose to use a four-line TAB based on simulation
results from our previous TAB implementation [3].

We estimate energy values for the TAB by synthesizing
its structures with the Synopsys Design Compiler [15] using
a 65nm 1.2-V low-power CMOS cell library. We use Syn-
opsys PrimeTime [16] to estimate the power consumption
of the entire structure by setting the design netlist’s inputs
to approximate the cycle-switching probabilities of a real
workload. Since we use the same 65nm process technology,
we take the L1D and DTLB energy figures from our recent
work [4]. These values (shown in Table 2) are multiplied
by event counters in SimpleScalar to produce overall energy
projections for a simulation. We run the same 20 MiBench
applications [7] used to study the original TAB system, and
we use large input datasets. These benchmarks span the six
application categories shown in Table 3.

Table 1: Processor configuration

BPB, BTB Bimodal, 128 entries

Branch Penalty 2 cycles

Integer & FP ALUs, MUL/DIV 1

Fetch, Decode, Issue Width 1

L1D & L1I 16KB, 4-way, 32B line, 1-cycle hit

L2U 64KB, 8-way, 32B line, 8-cycle hit

DTLB & ITLB 32-entry fully associative, 1-cycle hit

Memory Latency 120 cycles

TAB (when present) 128B, 32B line, 4 lines

Table 2: Energy values

Access Type Energy

L1D (load) / (store) 170.0 pJ / 91.2 pJ

L1D (byte) / (line) 28.2 / 367.4 pJ

DTLB 17.5 pJ

TAB (word) / (line) 8.2 pJ / 10.6 pJ

Metadata (TAB) / (line buffer) 1.4 pJ / 4.5 pJ

Extra Structures (register array) / (valid window) 0.7 pJ / 2.3 pJ

Table 3: MiBench benchmarks

Category Applications

Automotive basicmath, bitcount, qsort, susan

Consumer jpeg, lame, tiff

Network dijkstra, patricia

Office ispell, rsynth, stringsearch

Security blowfish, rijndael, sha, pgp

Telecomm adpcm, crc32, fft, gsm

7. EXPERIMENTAL EVALUATION
We first present performance and power results with re-

spect to a TAB-less system. We then compare these results
to those for the original TAB implementation.

7.1 Current Results
The compiler allocates one or more TAB entries to 63.3%

of all loops, and the average number of TAB entries it allo-
cates to these loops is 1.59. Figure 11(a) shows the static
ratios of the prefetch schemes assigned to TAB entries by
the gtab instructions allocating them. Over a third of the
gtab instructions allocate TAB entries to data with invariant
addresses: a prefetch occurs only once for the gtab instruc-
tion because the data remain in the TAB for the duration of
the loop’s execution. This happens because global variable

in
va

ria
nt

al
l s

to
re

s

al
l l
oa

ds

si
ng

le

in
st
ru

ct
io
n

0.1

0.2

0.3

0.4
S

ta
ti
c
 R

a
ti
o

(a) prefetch types

0 1 2 4 8

0.1

0.2

0.3

0.4

S
ta

ti
c
 R

a
ti
o

(b) strides

Figure 11: The left graph shows ratios of static memory ref-
erence instructions generating different prefetch types. The
right graph shows the portions of the statically allocated
TAB entries accessed with a given stride.

references cannot be hoisted from loops containing function
calls. Most of the remaining gtabs allocate TAB entries set
to prefetch on all stores or all loads. Fewer than 1% of the
allocated TAB entries hold data that are referenced multi-
ple times within a loop; these necessitate prefetching on only
one of those memory reference instructions.

Figure 11(b) shows the distribution of strides with which
the TAB entries are accessed. This breakdown is normalized
to the number of TAB entries allocated by (static) gtab

instructions generated by the compiler. Non-power-of-two
strides are used by fewer than 1% of allocated TAB entries,
and so the figure only shows power-of-two strides. TAB
entries holding character (one-byte) and integer (four-byte)
data are most common. TAB entries associated with invari-
ant addresses have zero-stride accesses.

Figure 12(a) shows the percentages of memory references
directed to the TAB and what portion of those accesses are
strided or invariant. TAB references account for 33.4% of
the total references, on average, but some applications have
few TAB accesses. For instance, many functions in rsynth

take large structures as pass-by-value parameters addressed
through the stack pointer instead of through registers. These
accesses cannot be directed to the TAB because they do not
fit within a TAB entry, and they cannot be split between the
L1D and the TAB because the hardware requires the base
register to be exclusive to the TAB references. Passing large
structures by value is not a standard programming practice,
so it has little impact on results.

Figure 12(b) shows the breakdowns of L1D accesses on
our TAB system versus the TAB-less baseline system. On
average, the L1D is accessed 30.9% fewer times. TAB over-
heads — additional accesses for prefetches and writebacks
— account for just 2.7% of normal L1D accesses.

Figure 12(c) gives executed cycles as a percentage of total
baseline cycles. We access the TAB in the execute stage: it
is small and fast, and the base register plus displacement cal-
culation is only used for the offset into the TAB line buffer.
Despite the extra instructions generated for the TAB, ap-
plications execute 1.7% fewer cycles, on average, largely be-
cause accessing the TAB in the execute stage avoids some
load hazards.

ad
pc

m

ba
si
cm

at
h

bi
tc
ou

nt

bl
ow

fis
h

cr
c

di
jk
st
ra fft

gs
m
is
pe

ll
jp
eg

la
m

e

pa
tri

ci
a

pg
p
qs

or
t

fij
nd

ae
l

rs
yn

th
sh

a

st
rin

gs
ea

rc
h

su
sa

n tif
f

av
er

ag
e

ol
d

av
er

ag
e

20

40

60

80

100

%
 T

A
B

 U
ti
liz

a
ti
o
n

invariant accesses

strided accesses

(a) TAB utilization

ad
pc

m

ba
si
cm

at
h

bi
tc
ou

nt

bl
ow

fis
h

cr
c

di
jk
st
ra fft

gs
m
is
pe

ll
jp
eg

la
m

e

pa
tri

ci
a

pg
p
qs

or
t

fij
nd

ae
l

rs
yn

th
sh

a

st
rin

gs
ea

rc
h

su
sa

n tif
f

av
er

ag
e

ol
d

av
er

ag
e

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10.0

N
o
rm

a
liz

e
d
 L

1
D

 A
c
c
e
s
s
e
s

writebacks

prefetches

stores

loads

(b) relative L1D accesses broken down by type

ad
pc

m

ba
si
cm

at
h

bi
tc
ou

nt

bl
ow

fis
h

cr
c

di
jk
st
ra fft

gs
m
is
pe

ll
jp
eg

la
m

e

pa
tri

ci
a

pg
p
qs

or
t

fij
nd

ae
l

rs
yn

th
sh

a

st
rin

gs
ea

rc
h

su
sa

n tif
f

av
er

ag
e

ol
d

av
er

ag
e

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

(c) relative execution times

ad
pc

m

ba
si
cm

at
h

bi
tc
ou

nt

bl
ow

fis
h

cr
c

di
jk
st
ra fft

gs
m
is
pe

ll
jp
eg

la
m

e

pa
tri

ci
a

pg
p
qs

or
t

fij
nd

ae
l

rs
yn

th
sh

a

st
rin

gs
ea

rc
h

su
sa

n tif
f

av
er

ag
e

ol
d

av
er

ag
e

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 E

n
e
rg

y

L1I extra

TAB

DTLB

L1D

(d) relative energy dissipated

Figure 12: These graphs show TAB performance and en-
ergy results for our 20 MiBench applications as compared
to a TAB-less system. The second bars from the right show
arithmetic means for all applications, and the right-most
bars show the same means for the old implementation [3].

Figure 12(d) shows TAB system energy usage compared to
total L1D and DTLB baseline energy. We include the extra
energy dissipated in the L1 instruction cache (L1I) by the
additional instructions required for TAB operation. These
contribute just 2.9% of the baseline L1D and DTLB energy.
Note that ispell and pgp use more L1I energy due to loops
that execute few iterations. This means they cannot amor-
tize the overheads of fetching gtab and rtabs instructions.

The extra TAB hardware has an average energy overhead
of 3.0%, bringing the TAB’s total operational overhead to
5.9%. Total average L1D/DTLB energy savings is 21.8%.
Note that even when data are not being accessed in the TAB,
loads and stores must still check the TAB register array and
valid window to ensure that accesses are directed to the
proper structure. Some applications use slightly more en-
ergy with the TAB because of such per-reference overheads,
higher instruction counts, and/or low TAB hit rates. Such
increases are small and infrequent, and we deem them rea-
sonable tradeoffs for an implementation that requires only
one ISA change and maintains backward compatibility.

7.2 Comparing New and Old TAB Systems
The old implementation takes bits from the immediate

fields of load and store instructions to direct them to a
TAB entry or to the L1D. The new implementation modifies
no existing instructions, trading flexibility for compatibility
with legacy code. In contrast to our old implementation, we
now must restrict TAB allocation to references using a base
register, and no non-TAB references may use that register.
The two rightmost bars in Figure 12(a) show that these re-
strictions reduce the percentage of TAB accesses from 41.4%
to 33.6%. Those in Figure 12(b) show that the percentage
of L1D accesses grows from 61.6% to 69.1%, an increase of
7.5%. These restrictions have little effect on strided and
invariant-address TAB accesses.

The rightmost bars in Figure 12(c) show an increase from
97.5% to 98.3% in relative execution times. This is due to
having fewer TAB accesses and more generated instructions.
The old implementation uses a gtab immediate field as to
calculate the starting address, whereas this implementation
uses these bits to encode other information. The starting
address must instead be stored in the register specified in
the gtab. As shown in Figure 5, sometimes the compiler
must generate extra instructions to add an offset to the base
register. This has little impact: execution time is still lower
than when not using the TAB.

The rightmost bars in Figure 12(d) show an 8.6% decrease
in energy savings (from 30.4% to 21.8%) from having fewer
TAB accesses compared to old implementation and from the
overhead of the extra hardware structures. Decreased TAB
utilization accounts for 86.04% of the lower energy savings,
and the extra TAB hardware accounts for 13.95%. The new
implementation’s increased instruction count has negligible
impact, accounting for only 0.01% of the energy differences.

8. RELATED WORK
Witchel et al. [17] propose a hardware/software design

that uses direct address registers (DARs) to hold informa-
tion on lines loaded into the L1D. The compiler places values
in the DARs as an optional side-effect of performing a load
or store, and subsequent accesses to the cache line bypass
tag checks, directly addressing the data array. The com-
piler uses some immediate bits of the load/store operations

for control purposes, much like the original TAB approach.
The TAB approach presented here avoids such invasive ISA
changes. The DAR reduces energy usage by avoiding ac-
cesses to the tag array and by activating only a single way
of the L1D data array for memory references guaranteed to
access a specified L1D line. The TAB also avoids tag checks,
but it accesses smaller and more power-efficient structures
compared to a single way of the much larger L1D data array.

In addition, the DAR approach requires code transforma-
tions like loop unrolling to make alignment guarantees for
strided accesses. Many loops cannot be unrolled because the
number of loop iterations is not known at the entry point the
loop. When the compiler cannot identify a variable’s align-
ment, it inserts a preloop to guarantee alignment in the loop
body (and multiple variables can make this alignment com-
plex) The TAB requires no extensive code transformations.

Kadayif et al. [9] propose a compiler-directed physical ad-
dress generation scheme to avoid DTLB accesses. Several
translation registers (TRs) hold PPNs. The compiler iden-
tifies variables residing in the same virtual page and gen-
erates a special load instruction to store the PPN in a TR.
Subsequent references accessing this page bypass the DTLB,
getting the PPN from the specified TR. The compiler uses
some of the most significant bits of the 64-bit virtual ad-
dress to identify whether the access must get the physical
address from a particular TR. If the virtual address cannot
be determined statically, additional runtime instructions dy-
namically modify the virtual address. Several code transfor-
mations, including loop strip mining, are used to avoid ad-
ditional DTLB accesses, but these transformations increase
code size. This approach reduces the number of DTLB ac-
cesses and thus DTLB energy usage, but it does not reduce
the number of L1D accesses.

Others have suggested adding small structures to reduce
L1D energy. For instance, Su and Despain [14] add a buffer
to hold the last L1D line accessed. This buffer resides on
the critical path: it must be checked before each L1D ac-
cess. Our evaluations with our MiBench applications find
that a 32-byte last-line buffer incurs a 73.8% miss rate. This
architecture continuously fetches full lines from the L1D, in-
creasing rather than decreasing energy usage. Kin et al. [12]
propose small filter caches between the processor and the
L1D to reduce power dissipation in the data cache. Filter
caches have historically suffered high miss rates that unac-
ceptably lower performance. In other work, we present a
filter cache implementation that reduces both energy and
execution time [4]. The TAB can be used with our filter
cache to further reduce energy: TAB accesses exploit se-
quential locality detected at compile time, while the filter
cache automatically detects other locality.

Nicolaescu et al. [13] propose a power-saving scheme for
associative data caches. A table stores way information for
the last N cache accesses, and all cache accesses cause tag
searches in the table. On a match, the corresponding infor-
mation is used to activate only that way. This approach still
requires an L1D access on every data reference, but it (and
similar techniques) can be combined with the TAB to reduce
L1D access power for accesses the TAB does not capture.

Scratchpads [2,10,11] can reduce energy usage, since they
require no tag checks or virtual-to-physical address transla-
tion. Variables must be explicitly allocated to these small
memory structures, which are typically much larger than
the TAB. Unlike the TAB, scratchpads are exclusive with

respect to the rest of the memory hierarchy, and they re-
quire extra code to copy data to and from main memory.
This presents a challenge for compiler writers or application
developers. Since data must be explicitly copied, there is no
implicit support for strided access patterns.

9. CONCLUSION
Our original TAB system reduces L1D and DTLB energy

usage by almost a third, but it requires changes to load and
store instructions. The alternative implementation that we
present here saves less energy (by over a fifth), but it is
backwards-compatible with codes compiled for a TAB-less
system, and it requires only one additional opcode. Both
the old and new implementations reduce energy by replacing
L1D accesses with those to a smaller, more power-efficient
structure that requires no tag checks. As in the original
TAB, this implementation reduces execution time by access-
ing the TAB earlier in the pipeline and by using prefetching
to offset stalls incurred by L1D misses.

10. ACKNOWLEDGMENTS
This work was supported in part by NSF grants CNS-

0964413, DUE-1241525, DUE-1259462, IIA-1358147, and
CCF-1533846, and by the Swedish Research Council grant
2015-5159. The authors thank Alen Bardizbanyan for shar-
ing his expertise from previous collaborations.

11. REFERENCES
[1] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An

infrastructure for computer system modeling. IEEE
Computer, 35(2):59–67, Feb. 2002.

[2] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan,
and P. Marwedel. Scratchpad memory: Design
alternative for cache on-chip memory in embedded
systems. In Proceedings of the International
Conference on Hardware/Software Codesign and
System Synthesis, pages 73–78, May 2002.

[3] A. Bardizbanyan, P. Gavin, D. Whalley, M. Själander,
P. Larsson-Edefors, S. A. McKee, and P. Stenström.
Improving data access efficiency by using a tagless
access buffer (TAB). In Proceedings of the
International Symposium on Code Generation and
Optimization, pages 269–279, Feb. 2013.

[4] A. Bardizbanyan, M. Själander, D. Whalley, and
P. Larsson-Edefors. Designing a practical data filter
cache to improve both energy efficiency and
performance. ACM Transactions on Architecture and
Code Optimization, 10(4):54:1–54:25, Dec. 2013.

[5] M. E. Benitez and J. W. Davidson. A portable global
optimizer and linker. In Proceedings of the Conference
on Programming Language Design and
Implementation, pages 329–338, June 1988.

[6] W. J. Dally, J. Balfour, D. Black-Shaffer, J. Chen,
R. C. Harting, V. Parikh, J. Park, and D. Sheffield.
Efficient embedded computing. IEEE Computer,
41(7):27–32, July 2008.

[7] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and T. B. Brown. MiBench: A free,
commercially representative embedded benchmark
suite. In Proceedings of the IEEE International
Workshop on Workload Characterization, pages 3–14,
Dec. 2001.

[8] R. Hameed, W. Qadeer, M. Wachs, O. Azizi,
A. Solomatnikov, B. C. Lee, S. Richardson,
C. Kozyrakis, and M. Horowitz. Understanding
sources of inefficiency in general-purpose chips. In
Proceedings of the International Symposium on
Computer Architecture, pages 37–47, June 2010.

[9] I. Kadayif, P. Nath, M. Kandemir, and
A. Sivasubramaniam. Compiler-directed physical
address generation for reducing dTLB power. In
Proceedings of the International Symposium on
Performance Analysis of Systems and Software, pages
161–168, Mar. 2004.

[10] M. Kandemir, I. Kadayif, A. Choudhary,
J. Ramanujam, and I. Kolcu. Compiler-directed
scratch pad memory optimization for embedded
multiprocessors. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 12(3):281–287, Mar.
2004.

[11] M. Kandemir, J. Ramanujam, J. Irwin,
N. Vijaykrishman, I. Kadayif, and A. Parikh.
Dynamic management of scratch-pad memory space.
In Proceedings of the Design Automation Conference,
pages 690–695, June 2001.

[12] J. Kin, M. Gupta, and W. H. Mangione-Smith. The
filter cache: an energy efficient memory structure. In
Proceedings of the International Symposium on
Microarchitecture, pages 184–193, Dec. 1997.

[13] D. Nicolaescu, B. Salamat, A. Veidenbaum, and
M. Valero. Fast speculative address generation and
way caching for reducing L1 data cache energy. In
Proceedings of the International Conference on
Computer Design, pages 101–107, Oct. 2006.

[14] C.-L. Su and A. M. Despain. Cache design trade-offs
for power and performance optimization: A case
study. In Proceedings of the International Symposium
on Low Power Electronics and Design, pages 63–68,
Apr. 1995.

[15] Synopsys, Inc. Design Compiler R©, v. 2010.03, 2010.

[16] Synopsys, Inc. PrimeTime R© PX, v. 2011.06, 2011.

[17] E. Witchel, S. Larsen, C. S. Ananian, and
K. Asanović. Direct addressed caches for reduced
power consumption. In Proceedings of the
International Symposium on Microarchitecture, pages
124–133, Dec. 2001.

