
Architecting Selective Refresh based Multi-Retention
Cache for Heterogeneous System (ARMOUR)

Sukarn Agarwal
The University of Edinburgh

Edinburgh, UK
sagarwa2@ed.ac.uk

Shounak Chakraborty
Norwegian University of Science

and Technology, Trondheim, Norway
shounak.chakraborty@ntnu.no

Magnus Själander
Norwegian University of Science

and Technology, Trondheim, Norway
magnus.sjalander@ntnu.no

Abstract—The increasing use of chiplets, and the demand for
high-performance yet low-power systems, will result in heteroge-
neous systems that combine both CPUs and accelerators (e.g.,
general-purpose GPUs). Chiplet based designs also enable the
inclusion of emerging memory technologies, since such technolo-
gies can reside on a separate chiplet without requiring complex
integration in existing high-performance process technologies. One
such emerging memory technology is spin-transfer torque (STT)
memory, which has the potential to replace SRAM as the last-
level cache (LLC). STT-RAM has the advantage of high density,
non-volatility, and reduced leakage power, but suffers from a
higher write latency and energy, as compared to SRAM. However,
by relaxing the retention time, the write latency and energy
can be reduced at the cost of the STT-RAM becoming more
volatile. The retention time and write latency/energy can be traded
against each other by creating an LLC with multiple retention
zones. With a multi-retention LLC, the challenge is to direct the
memory accesses to the most advantageous zone, to optimize for
overall performance and energy efficiency. We propose ARMOUR,
a mechanism for efficient management of memory accesses to a
multi-retention LLC, where based on the initial requester (CPU
or GPU) the cache blocks are allocated in the high (CPU) or
low (GPU) retention zone. Furthermore, blocks that are about
to expire are either refreshed (CPU) or written back (GPU). In
addition, ARMOUR evicts CPU blocks with an estimated short
lifetime, which further improves cache performance by reducing
cache pollution. Our evaluation shows that ARMOUR improves
average performance by 28.9% compared to a baseline STT-RAM
based LLC and reduces the energy-delay product (EDP) by 74.5%
compared to an iso-area SRAM LLC.

Index Terms—STT-RAM, NVM, retention time, multi-retention
cache, heterogeneous system, GPU, energy efficiency

I. INTRODUCTION

The demand for high performance yet low power has led
to an increasing use of heterogeneous systems that integrates
CPUs and general-purpose GPUs (GPGPUs). With the increas-
ing use of chiplets for high-performance systems, CPUs and
GPGPUs are becoming tightly integrated, such as in Intel’s
proposed Meteor Lake CPUs [1]. For such systems, it is
desirable to have a single shared last-level cache (LLC) to
simplify data sharing in CPU-GPGPU workloads. However, a
sufficiently large SRAM-based LLC requires a large amount
of area and comes with a high static-energy usage. To address
these issues, computer architects are investigating emerging
memory technologies, such as spin-transfer torque RAM (STT-
RAM) [2], phase change memory (PCM) [3], and flash mem-
ory [4]. Out of these, STT-RAM has the potential to replace

conventional SRAM in cache designs due to its low leakage
power, high endurance, and comparable read access times.

STT-RAM, however, suffers from longer write latency and
increased write energy as compared to SRAM [5]. Both write
latency and energy related issues can be mitigated by lowering
the retention time of the STT-RAM cell [6], but a lower
retention time can increase the required number of writebacks
or refreshes due to early expiry of cache blocks. The increased
writebacks or refreshes give rise to increased power and energy
overheads [7], [8]. A higher retention time reduces the refreshes
and writebacks by enhancing the lifetime of the individual
blocks, at the cost of increased write energy and latency.
However, the lifetime of the cache blocks is drastically curtailed
when executing CPU and GPU workloads in parallel, in a
heterogeneous system, due to the increased cache contention
caused by interference [9], [10]. A plethora of prior arts [9]–
[11] tackle cache contention and interference, but none of the
previous studies considered multi-retention STT-RAM based
caches, which balance the benefits and disadvantages of differ-
ent retention times by allocating blocks with shorter (longer)
cache lifetime in the lower (higher) retention zone.

By simulating a set of CPU-GPGPU workload combinations,
we concluded that the cache lifetimes of both CPU and GPGPU
applications are drastically reduced while executing together.
Additionally, the cache lifetime of GPU cache blocks is signif-
icantly lower than of CPU cache blocks, on average, which
motivates us to writeback throughput oriented GPU cache
blocks on expiry, whereas, the performance critical CPU blocks
are refreshed. We propose ARMOUR, a mechanism for efficient
management of multi-retention STT-RAM LLCs. ARMOUR
differentiates between CPU and GPU blocks, allocates GPU
(CPU) blocks in the lower (higher) retention zone, writes back
GPU blocks, and dynamically refreshes CPU blocks on expiry.

As the name of the mechanism suggests, ARMOUR protects
live CPU blocks against large bursts of GPGPU memory
operations and dead CPU blocks. The main contributions of
ARMOUR are as follows:

• We present an analysis on how the average lifetime of
cache blocks are significantly reduced when executing
both CPU and GPGPU workloads in parallel than when
executing them in isolation;

• ARMOUR identifies dead CPU blocks and proactively
evicts them from the LLC to free up cache space;

0

100

200

300

400

500

600

Li
fe

 S
pa

n
(in

 m
s)

Fig. 1: Average lifetime of CPU-only workload.

0
10
20
30
40
50
60
70
80

Li
fe

 S
pa

n
(in

 m
s)

Fig. 2: Average lifetime of GPU-only workloads.

0
30
60
90

120
150
180
210

Li
fe

 S
pa

n
(in

 m
s)

CPU Life Span GPU Life Span

Fig. 3: Average lifetime of mixed CPU-GPGPU
workloads.

TABLE I: Comparison of refresh based vs writeback based relaxed cache
(normalized to 8 MiB SRAM cache)

Type CPI Energy Refresh MPKI EDP

20 ms Refresh 1.48 8.00 23.6% 1.01 0.45
Writeback 1.31 6.00 1.53 0.35

50 ms Refresh 1.37 7.42 15.5% 1.02 0.39
Writeback 1.29 5.91 1.21 0.33

100 ms Refresh 1.26 6.93 7.43% 1.04 0.34
Writeback 1.35 6.22 1.10 0.37

500 ms Refresh 1.42 6.85 1.75% 1.01 0.41
Writeback 1.40 6.56 1.07 0.39

• ARMOUR protects the residency of live CPU blocks
against GPU blocks with poor temporal locality and dead
CPU blocks.

The ARMOUR architecture is described in Sec. III after dis-
cussing our motivation in Sec. II. Our results (Sec. V) show
that ARMOUR reduces the misses per kilo instructions (MPKI)
by up to 51% over the baselines, resulting in a reduction in
cycles per instruction (CPI) by more than 20% and more than
15% over iso-area SRAM and iso-capacity STT-RAM based
LLCs, respectively. Further, ARMOUR achieves a significant
reduction in energy delay product (EDP) of 74.5% compared
to an SRAM based iso-area LLC.

II. MOTIVATION

We begin with analyzing a set of CPU and GPGPU work-
loads by executing them in isolation and in parallel to study the
difference in LLC usage behavior. We use SPEC (CPU) [12],
Rodinia [13], and Pannotia [14] (GPGPU) workloads with an
8 MiB SRAM LLC in gem5-gpu [15] for 80M cycles. Sec. IV
details our simulation framework and selected workloads. The
details for individual applications and average cache lifetime
for CPU workloads are shown in Figure 1, for GPU workloads
in Figure 2, and for mixed workloads in Figure 3. From the
results, we conclude that the average lifetime for CPU blocks
is 290 ms and for GPU blocks is 34 ms when executed in
isolation. When executing both CPU and GPGPU workloads in
parallel, the average cache lifetime reduces significantly due to
cache contention caused by interference. The average lifetime
of CPU blocks is reduced to 70 ms and for GPU blocks to 14
ms, which can aggravate performance by premature eviction of
the cache blocks.

We further study the power-performance tradeoffs with an
8 MiB relaxed STT-RAM that either refreshes or writes back
blocks for different retention times of 20 ms, 50 ms, 100 ms,
and 500 ms, which are listed in Table I. All the result metrics

in the table are normalized to an 8 MiB SRAM-based LLC.
As evident from the table, on a lower retention zone of 20 ms,
the increased refreshes lead to increased energy usage than the
writeback approach. However, the writeback approach increases
the miss rate due to premature eviction of cache blocks, which
degrades the CPI. On the other hand, a higher retention time
drastically reduces writeback and/or refresh overheads, which
improves the MPKI and energy overheads. But, higher retention
time can incur higher write latency and write energy. Hence,
there is a trade-off between the refresh and writeback approach
regarding the application and core behavior. Thus, our empirical
evaluation motivates us to write back GPU cache blocks
due to their short lifetimes, and to refresh the performance-
critical CPU blocks that benefit from longer cache residency.
This reduces premature eviction of performance critical cache
blocks, a prime objective of ARMOUR.

III. ARMOUR: PROPOSED ARCHITECTURE

In this section, we present the core idea of ARMOUR. We
assume a system equipped with a shared LLC and a set of
CPU and GPU cores, where each core has its own private L1
caches. ARMOUR uses a multi-retention LLC architecture that
is partitioned way-wise. Figure 4 illustrates a 16-way LLC with
four retention zones, each consisting of four ways.

A requested cache block can be placed anywhere within
its designated cache set, but, during block allocation, the
search direction for a suitable block to evict is based upon
the requester, i.e., if it is coming from a CPU or GPU core.
If the requester is a CPU, then the search for an invalid or
clean non-most-recently-used (non-MRU) entry starts from the
higher retention zone (i.e., from way 15) and ends at the lower
retention zone. If the requester is a GPU, then the search starts
from the lower retention zone (i.e., from way 0) and ends at
the higher retention zone. Figure 4 illustrates this allocation
strategy. On absence of a clean non-MRU block in a set, the
first non-MRU block found during the search is evicted. For
identifying, if a block allocation has been done by a CPU or a
GPU core, a single id-bit is added to each block entry.

ARMOUR further introduces a simple block management
strategy by considering the lifetime of CPU and GPU cache
blocks. Our preliminary evaluation shows that, the lifetime of
CPU blocks in the LLC is much higher than for GPU blocks.
Hence, our proposition is to populate the LLC with more CPU
blocks than GPU blocks. On the expiry of a cache block, the
id-bit is checked to identify the initiator of the block. If the

Set i

LLC Ways

GPU Block

CPU Block

4 Different Retention Time-zones
(Min. to Max.: from left to right)

GPU Block Allocation CPU Block Allocation

Min. Retention Time Max. Retention Time

0 1 2 15Way id:

Fig. 4: Allocation strategy of ARMOUR for the CPU
and GPU blocks in the multi-retention STT-RAM LLC.

Set i

LLC Ways

GPU Block

CPU Block
Refresh blocks

on expiry
Evict blocks

on expiry

4 Different Retention Time-zones

Data
Block Ctr

2 bit Counter
per Block

0 1 2 15Way id:

Fig. 5: Handling of CPU and GPU blocks in a multi-retention
STT-RAM LLC.

S0 S1 SN

T T T

W W E

T: Counter’s Pulse Width;
W: Write/Invalidate; E: Expired

S2

T

Fig. 6: Counter for monitor-
ing block expiry.

initiator is a GPU core, then the block is evicted from the LLC,
with dirty blocks being written back to memory. Whereas, if
the initiator is a CPU core, then the block is refreshed and
retained in the LLC. Figure 5 depicts the block management
strategy on the verge of expiry. As seen, the CPU blocks at
cache ways 2, 3, 4, etc. are refreshed (shown with feedback
arrow), whereas, the GPU blocks at cache ways 0, 1, 5, etc.
are written back (shown with downward arrow).

At the end of the retention times, the individual block’s
expiry needs to be tracked with the help of a counter, as shown
in Figure 6. A clock period is defined that is N times smaller
than the retention time, where N implies the number of states
used by the counter. The counter advances to the next state on
a fixed time-out (T) unless there is a write (W) to the block.
Once the counter reaches the saturation point (i.e., state SN),
the expiry of the block (E) is detected and subsequently the
block is either evicted or refreshed based upon the id-bit and
the counter is reset (S0). On a write or invalidation (W), the
counter is always reset (S0). The implementation of the counter
can be adopted by employing a prior technique [16].

An increased number of CPU blocks in the LLC might
lead to cache pollution by containing a higher number of
dead or unused blocks, i.e., blocks that are never accessed
again before they get evicted. Our results (Table VI) show
that dead blocks are responsible for 64% of all blocks that
are refreshed, on average. To address this issue, ARMOUR
tracks read accesses of the individual blocks, for which a 2-
bit saturating counter, attached to each LLC block, is used.
Figure 7 shows the associated 2-bit counter. The counter for a
block is reset every time it is refreshed or written. On every read
operation, the counter is incremented. The counter value for a
block is assessed on the expiry of the cache block. If the counter
value is above a set threshold (ThX) for the given retention
zone, then the block is refreshed, else the block is evicted.
Figure 7 shows an example where CPU blocks at cache ways
2, 4, 8, 9, and 15 are refreshed as their counter value is larger
than the respective retention threshold. Whereas, due to lower
counter value than the retention threshold, the CPU blocks at
cache ways 3, 6, 10, and 14 are evicted.

Implementation Overhead: To implement ARMOUR, we
need a 2-bit counter for each block, and an id-bit for identifying
if the block is allocated by a CPU or a GPU core. Hence, each
block has three additional bits, which constitutes a negligible
area overhead of less than 1% [17]. Other implementation
overheads include the time tracking for each block before
triggering a transition to another state, which is implemented

Data
Block

Ctr <
Th0

Evict Block

Data
Block

Ctr <
Th1

Evict Block

Data
Block

Ctr <
Th2

Evict Block

Data
Block

Ctr <
Th2

Evict Block
Yes Yes

YesYes

Fig. 7: Eviction of CPU-blocks based on the read counter and respective
thresholds of different retention time zones.

TABLE II: System Configuration

System Components Configuration

GPU Core 16 shader cores, 1.4 GHz,
48 warps/core, 32 threads/warp

CPU Core x86 quad-core, 2GHz

GPU L1 SRAM Cache
16 KiB, 4-way I/D cache, 12 KiB 24-way
texture cache, 8KiB 2-way constant cache,

128B cache block
CPU L1 SRAM Cache 32 KiB, 4-way I/D, 128 B cache block

Shared STT/SRAM LLC 8 × 1MiB / 8 × 512 KiB, 16-way, 128 B line
Main Memory 8 GiB DRAM

by incorporated a prior technique [16]. Note that, the CPU
blocks are selectively refreshed on expiry, for which we adopt
the hardware mechanism discussed in CacheRevive [18].

IV. SIMULATION FRAMEWORK AND BENCHMARKS

We evaluate ARMOUR on gem5-gpu [15]. Table II reports
the system configuration consisting of four x86 CPU cores
and 16 GPU cores. Each CPU and GPU core has its own
private L1 instruction and data caches. The multi-retention
STT-RAM LLC is shared between the CPU and GPU cores.
The shared LLC is divided into eight banks of 1 MiB each.
Each bank is partitioned into four different retention time
zones of 20 ms, 50 ms, 100 ms, and 500 ms. The retention
times and energy parameters are detailed in Table III, obtained
from CACTI-STT [17]. To measure the efficacy of ARMOUR,
we executed a range of CPU and GPGPU workloads from
the SPEC CPU 2006 [12], Rodinia [13], and Pannotia [14]
benchmark suits, as given in Table IV. Based on the MPKI of
respective CPU workload, different mixes are constructed, as
reported in Table V. Each mix consists of three CPU workloads
of high, mid, and low MPKI, and one GPGPU workload. We
ran each mix of workloads for 500 million instructions, with
both CPU and GPGPU workloads executed in parallel.

TABLE III: Timing, Energy and Area values for Iso-Area SRAM and STT-
RAM cahes (4/8MiB, 16-way) for multiple retention times [17]

Memory Device SRAM STT-RAM

Retention Time/Feature Size 22nm CMOS (A) 20ms 50ms 100ms 500ms
Wr Energy (pJ) (per access/bit) 0.239 5.01 5.22 5.37 5.61
Rd Energy (pJ) (per access/bit) 0.239 0.209 0.211 0.213 0.222

Leakage Power (at 350K) 326.71 mW 84.409 mW
Rd Latency (cycles) 2 2 2 2 2
Wr Latency (cycles) 2 6 7 8 9

Area 1.8116 0.425 0.432 0.436 0.467

TABLE IV: Benchmark Suites and Applications (L: Low MPKI, M: Mid
MPKI and H: High MPKI)

Benchmark Suites Applications

CPU SPEC
bzip (L), cactusADM (H), gobmk (L), lbm (M), leslie3d (M),
libquantum (L), milc (H), sjeng (H), zesump (M)

GPU
Rodinia Cell, Gaussian, Heartwall, Myocyte, NN, SRAD
Pannotia Color, MIS, Page Rank (pr)

We evaluate the following system configurations: The SRAM
configuration has an iso-area SRAM-based LLC of 4 MiB with
the same area budget as an 8 MiB STT-RAM based LLC, as
evident from Table III. Whereas the STT-REF and STT-WB
configurations are the iso-capacity multi-retention STT-RAM
LLC that either refreshes or writes back the cache blocks on
expiry, respectively. The STT-REF&WB configuration has an
iso-capacity multi-retention STT-RAM LLC that refreshes CPU
blocks and writes back GPU blocks on expiry. ARMOUR is
similar to STT-REF&WB with the addition of evicting CPU
blocks that have not reached the read threshold (ThX) as
described in Sec. III. Note that, in our simulation, we set
Th0 = 1, Th1 = 2, and Th2 = 31.

V. RESULTS AND ANALYSIS

In this section, we first discuss the allocation of CPU
and GPGPU blocks across the retention zones, and how this
allocation in combination with proactive dead CPU block
eviction improve the performance for each application. Next,
the impact of ARMOUR on write endurance and energy usage
is discussed. Lastly, partitioned vs. shared caches are compared,
while implementing partitioned cache with restricted allocation.

A. Performance Analysis

We first present the refresh percentages of the dead blocks
for different mixes of CPU and GPGPU workloads in Table VI.
Table VI also presents the GPU block allocation percentage
across different retention zones. On average, 62% of GPU
blocks are allocated to lower retention zones (i.e., 20 ms and
50 ms), which shows that ARMOUR effectively accounts for
the lower temporal locality of the GPU applications.

Figure 8 presents the CPI normalized to the SRAM con-
figuration. ARMOUR achieves a CPI improvement of 28.9%,
22.3%, 15.3% and 7.5% over STT-WB, SRAM, STT-REF,
and STT-REF&WB, respectively. Whereas the respective CPI
improvements by STT-REF&WB are 23.1%, 16%, and 8.4%

1We performed the experiments on different ThX values and found these
as stable ones. The results are not shown due to the space limitation.

TABLE V: CPU-GPGPU Workload Mixes

Mix Applications
Mix1 sjeng, leslie3d, libquantum, cell
Mix2 cactusADM, zesump, gobmk, gaussian
Mix3 milc, leslie3d, bzip, heartwall
Mix4 milc, zesump, libquantum, myocyte
Mix5 sjeng, lbm, bzip, nn
Mix6 sjeng, leslie3d, bzip, srad
Mix7 cactusADM, leslie3d, bzip, color
Mix8 milc, zesump, gobmk, mis
Mix9 cactusADM, lbm, libquantum, pr

TABLE VI: Dead block refresh percentage across different mixes and GPU
block allocation percentage in different retention zones

GPU Block Allocation at
each retention zone (in %)

Mixes
Dead Block

Refresh
(in %)

20ms 50ms 100ms 500ms

Mix1 65.2% 31.8% 29.6% 19.9% 18.6%
Mix2 65% 33.7% 29% 19.9% 17.4%
Mix3 61.1% 34.9% 31.6% 18.4% 15%
Mix4 60.1% 32.3% 29.1% 20.8% 17.8%
Mix5 60.8% 32.2% 28.5% 20.5% 18.7%
Mix6 71.1% 32.1% 29.8% 18.7% 19.4%
Mix7 60.1% 31.6% 31.3% 19.4% 17.6%
Mix8 64.8% 31% 31% 19.6% 18.4%
Mix9 69.7% 31.5% 33.8% 20.2% 14.4%
Mean 64.1% 32.3% 30.4% 19.7% 17.5%

over STT-WB, SRAM, and STT-REF, respectively. These im-
provements are due to the reduction in refreshes and writebacks,
which results in a significant reduction in MPKI, as shown in
Figure 9.

We present the normalized reduction in refresh and writeback
counts over STT-REF and STT-WB in Figure 10 and 11, respec-
tively. In particular, the refresh counts of ARMOUR are reduced
by 68.1%, and 56.5% over STT-REF, and STT-REF&WB,
respectively. Whereas, the writeback count for ARMOUR is
reduced by 59.9% for STT-WB, but it has been increased
by 74.7% over STT-REF&WB. Hence, the selective refresh
scheme of ARMOUR lowers both the refresh and writeback
counts, and the proactive evictions of dead CPU blocks improve
performance. However, the increase in writebacks of ARMOUR
over STT-REF&WB is due to an increased number of write-
backs of CPU dead blocks, which increases the live block count
on-chip and ultimately improves performance.

B. Endurance Analysis

Figure 12 presents the intra-set write variation, which is the
write variation between the blocks inside a cache set [19]. AR-
MOUR reduces the write-variation by 10.67%, 9.1%, and 3.5%
over STT-REF, STT-WB and STT-REF&WB, respectively. The
respective improvements in the write variation by ARMOUR is
due to the allocation strategy that allocates CPU blocks from
higher to lower retention zones and GPU block from lower
to higher retention zones, as shown in Figure 4. Furthermore,
writing back the cache block to the next level of memory
on expiry ensures that writes are not concentrated on one
particular physical cache location. Hence, with the reduction
of write variation, the lifetime improvement (the inverse of the
maximum writes to a cache block) normalized to STT-REF
are 2.14, 1.78, and 1.38 times over STT-REF, STT-WB, and
STT-REF&WB, respectively, as shown in Figure 13.

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
. C

PI

SRAM STT-REF STT-WB STT-REF&WB ARMOUR

Fig. 8: Normalized CPI wrt. SRAM. (Lower is
better)

0

0.25

0.5

0.75

1

1.25

1.5

1.75

N
or

m
. M

PK
I

SRAM STT-REF STT-WB STT-REF&WB ARMOUR
2.05 2.03 2.16

Fig. 9: Normalized MPKI wrt. SRAM. (Lower is
better)

0

0.2

0.4

0.6

0.8

1

N
or

m
. R

ef
re

sh
es

STT-REF STT-REF&WB ARMOUR

Fig. 10: Normalized Refreshes wrt. STT-REF.
(Lower is better)

0

0.2

0.4

0.6

0.8

1

N
or

m
. W

rit
eb

ac
ks

STT-WB STT-REF&WB ARMOUR

Fig. 11: Normalized writebacks wrt. STT-WB.
(Lower is better)

0%

25%

50%

75%

100%

125%

150%

175%

In
tr

a-
Se

t
W

rit
e

Va
ria

tio
n

STT-REF STT-WB STT-REF&WB ARMOUR

Fig. 12: Intra-Set Write Variation wrt. STT-REF.
(Lower is better)

0

1

2

3

4

5

6

N
or

m
. L

ife
tim

e

STT-REF STT-WB STT-REF&WB ARMOUR

Fig. 13: Lifetime Improvement wrt. STT-REF.
(Higher is better)

C. Energy Analysis

Figure 14 reports the energy usage normalized to the SRAM
baseline. Due to fewer refreshes and writebacks, ARMOUR
achieves a total energy saving of 66.7%, 14.4%, 22.3%, and
6.71% over SRAM, STT-REF, STT-WB, and STT-REF&WB,
respectively. Figure 15 presents the energy delay product (EDP)
normalized against the SRAM baseline. The EDP gains by
name over SRAM, STT-REF, STT-WB, and STT-REF&WB
are 74.5%, 26.3%, 41.6%, and 13% respectively. Basically, the
significant reduction in writebacks and refreshes by ARMOUR
improves the EDP.

D. Partitioned vs. Shared Cache Analysis

We evaluate two cache architectures: partitioned and shared
on ARMOUR. In the partitioned approach, the cache is par-
titioned across different cache ways based on the core types.
For instance, ARMOUR 8C 8G represents eight ways of lower
retention (i.e., 20 ms and 50 ms) allocated to GPU applica-
tions, whereas eight ways of higher retention (i.e., 100 ms
and 500 ms) are allocated to CPU applications. Similar, with
ARMOUR 10C 6G, four ways of 20 ms and two ways of 50
ms are reserved for GPU, and two 50ms ways, four 100 ms
ways, and four 500 ms ways are reserved for the CPU. In the
partitioned approach, the search direction for an invalid entry
during allocation is the same as given in Figure 4. However, if
an invalid entry is not present within the partition assigned
to the respective core, then a non-MRU block is evicted.
Whereas, with the shared approach, the multi-retention cache
is shared irrespective of the core type (same as the analysis in
Sec. V-A, Sec. V-B, and Sec. V-C). In particular, any core can
allocate its block to any multi-retention partition based upon the
availability of the first invalid entry in their search direction.
Figure 16 presents the comparative analysis of EDP for a
statically partitioned cache vs. a shared cache with ARMOUR.

As evident from Figure 16, the shared cache outperforms the
partitioned cache. This is due to better cache space utilization
for the CPU blocks. Additionally, the temporal locality-based
refreshes and write backs of the GPU blocks ensure that the
cache holds mostly live blocks.

VI. STATE-OF-THE-ART

There exists plenty of prior techniques aimed at reducing
interference in the shared LLC for CPU-GPGPU workloads.
OSCAR, proposed by Zhan et al. [9], exploits a dense
STT-RAM cache architecture to reduce LLC contention, and
optimize cache traffic by prioritizing CPU packets over GPU
packets. Holey et al. [10], reduced cache contention by directly
accessing the off-chip memory, while bypassing the LLC, in a
GPU based system, by taking into account the available thread
level parallelism of GPU workloads that are latency tolerant.
Rai et al. [11] proposed a data criticality aware scheduling
algorithm for GPU cache accesses to accelerate the workloads.

Another group of prior art tries to exploit the benefits of
a multi-retention LLC with homogeneous systems. Dynamic
refresh scheme (DRS) based techniques, like CacheRevive [18],
first writes the cache blocks to a buffer when they expire and
then writes back the blocks to the cache. However, CacheRevive
limits the number of refreshes to only MRU blocks. The
overhead with DRS-based schemes is the extra energy and
performance aggravation due to data movement between the
cache and buffer. To overcome this, MirrorCache [20] employs
an extra cache to avoid regular data movement for refreshes,
but it negates the cell density advantage of the NVMs. Some
compiler-based techniques attempt to reduce the number of
refreshes [21], [22]. Along with the DRS-based approaches,
some studies propose writeback-based techniques [8], [23],
[24]. One such approach, HALLS [8], writes back the blocks
on expiry. HALLS improves the runtime EDP with a training-
based mechanism in a set of multi-retention multiple virtual

0

0.2

0.4

0.6

0.8

1

N
or

m
. E

ne
rg

y

SRAM STT-REF STT-WB STT-REF&WB ARMOUR

Fig. 14: Normalized energy wrt. SRAM.

0

0.2

0.4

0.6

0.8

1

N
or

m
. E

D
P

SRAM STT-REF STT-WB STT-REF&WB ARMOUR

Fig. 15: Normalized EDP wrt. SRAM.

0
10
20
30
40
50
60
70
80
90

ED
P

Im
pr

ov
em

en
t (

%
)

ARMOUR_8C_8G ARMOUR_10C_6G

ARMOUR_12C_4G ARMOUR_Shared

Fig. 16: EDP comparative analysis of partitioned
caches vs shared cache. (Higher is better)

bank setup. Based on the training analysis, HALLS binds the
application to one particular virtual bank. However, HALLS
do not consider the dynamic changes in write accesses across
execution phases of individual applications.

ARMOUR vs. Prior arts: Most of the prior works tackle
the interference in a shared SRAM LLC for heterogeneous
systems. Although, OSCAR [9] considers an NVM cache, this
work is limited to network optimizations and uses the NVM
cache to reduce capacity misses. To the best of our knowledge,
ARMOUR is the first work that employs a multi-retention NVM
LLC by considering the lifetime of cache blocks in a CPU-
GPU-based heterogeneous system. Prior techniques evaluate
multi-retention caches only for homogeneous systems, while
a few of might have limited applicability for heterogeneous
systems with their vastly different cache characteristics (as
shown in Sec. II). This makes meaningful comparisons with
earlier techniques challenging to perform.

VII. CONCLUSION

We consider a multi-retention STT-RAM-based LLC and
analyze the cache lifetime and interference of CPU-GPGPU
workloads in a heterogeneous platform. Our analysis shows
that the cache lifetime of CPU blocks are higher than for GPU
blocks, but the lifetime of both types of cache blocks drop
significantly when executing both workloads concurrently. Still,
CPU blocks show more extended cache residency than their
GPU counterparts. Hence, to mitigate the power-performance
overheads of an STT-RAM based LLC, we propose ARMOUR,
a hybrid mechanism that refreshes CPU blocks and writes
back GPU blocks when they expire. To reduce the refresh
overhead, ARMOUR selectively refreshes CPU blocks based
on their temporal locality and retention zone. ARMOUR also
prudentially selects and proactively evicts dead CPU blocks
to improve LLC utilization. Our evaluation shows significant
reduction of up to 28.9% in CPI with up to 51% reduction in
MPKI compared to an 8 MiB STT-RAM based LLC, integrated
in a heterogeneous system. ARMOUR also achieves an EDP
gain of 74.5% over an iso-area SRAM LLC.

ACKNOWLEDGMENT

This work was supported in part by a Marie Curie Individual
Fellowship (MSCA-IF), EU (Grant Number 898296), and in
part by a EPSRC grant EP/V028154/1 to the University of
Edinburgh.

REFERENCES

[1] W. Gomes, “Meteor Lake and Arrow Lake: Intel Next Gen 3D Client
Architecture Platform with Foveros,” in Hot Chips, 2022.

[2] D. Apalkov et al., “Spin-transfer torque magnetic random access memory
(STT-MRAM),” ACM JETC, 2013.

[3] M. K. Qureshi et al., “Phase change memory: From devices to systems,”
Synthesis Lectures on Computer Architecture, 2011.

[4] R. Bez et al., “Introduction to flash memory,” Proceedings of the IEEE,
2003.

[5] M. V. Beigi and G. Memik, “TAPAS: temperature-aware adaptive place-
ment for 3D stacked hybrid caches,” in MEMSYS, 2016.

[6] Z. Sun et al., “STT-RAM cache hierarchy with multiretention MTJ
designs,” IEEE TVLSI, 2014.

[7] ——, “Multi retention level STT-RAM cache designs with a dynamic
refresh scheme,” in MICRO, 2011.

[8] K. Kuan and T. Adegbija, “HALLS: an energy-efficient highly adaptable
last level STT-RAM cache for multicore systems,” IEEE TC, 2019.

[9] J. Zhan et al., “OSCAR: Orchestrating STT-RAM Cache Traffic for
Heterogeneous CPU-GPU Architectures,” in MICRO, 2016.

[10] A. Holey et al., “Performance-energy considerations for shared cache
management in a heterogeneous multicore processor,” ACM TACO, 2015.

[11] S. Rai and M. Chaudhuri, “Using criticality of GPU accesses in memory
management for CPU-GPU heterogeneous multi-core processors,” ACM
TECS, 2017.

[12] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” SIGARCH
Comput. Archit. News, 2006.

[13] S. Che et al., “Rodinia: A benchmark suite for heterogeneous computing,”
in IISWC, 2009.

[14] ——, “Pannotia: Understanding irregular gpgpu graph applications,” in
IISWC, 2013.

[15] J. Power et al., “gem5-gpu: A heterogeneous CPU-GPU simulator,” IEEE
CAL, 2015.

[16] Z. Sun et al., “Multi retention level STT-RAM cache designs with a
dynamic refresh scheme,” in MICRO, 2011.

[17] S. Arcaro et al., “Integration of STT-MRAM model into CACTI simula-
tor,” in IDT, 2014.

[18] A. Jog et al., “Cache revive: Architecting volatile STT-RAM caches for
enhanced performance in CMPs,” in DAC, 2012.

[19] J. Wang et al., “i2WAP: Improving non-volatile cache lifetime by
reducing inter- and intra-set write variations,” in HPCA, 2013.

[20] K. Kuan and T. Adegbija, “MirrorCache: an energy-efficient relaxed
retention L1 STTRAM cache,” in GLS-VLSI, 2019.

[21] K. Qiu et al., “Refresh-aware loop scheduling for high performance low
power volatile STT-RAM,” in ICCD, 2016.

[22] Q. Li et al., “Compiler-assisted refresh minimization for volatile stt-ram
cache,” IEEE Transactions on Computers, 2015.

[23] M. Baranwal et al., “DAMUS: Dynamic Allocation based on Write
Frequency in MUlti-Retention STT-RAM based Last Level Caches,” in
ISQED, 2021.

[24] S. Agarwal and S. Chakraborty, “ABACa: access based allocation on set
wise multi-retention in STT-RAM last level cache,” in 2021 ASAP, 2021.

	Introduction
	Motivation
	ARMOUR: Proposed Architecture
	Simulation Framework and Benchmarks
	Results and Analysis
	Performance Analysis
	Endurance Analysis
	Energy Analysis
	Partitioned vs. Shared Cache Analysis

	State-of-the-Art
	Conclusion
	References

