
ReCon: Efficient Detection, Management, and Use of
Non-Speculative Information Leakage

Pavlos Aimoniotis
pavlos.aimoniotis@it.uu.se

Uppsala University
Sweden

Amund Bergland Kvalsvik
amund.kvalsvik@ntnu.no
Norwegian University of
Science and Technology

Norway

Xiaoyue Chen
xiaoyue.chen@it.uu.se
Uppsala University

Sweden

Magnus Själander
magnus.sjalander@ntnu.no
Norwegian University of
Science and Technology

Norway

Stefanos Kaxiras
stefanos.kaxiras@it.uu.se

Uppsala University
Sweden

ABSTRACT

In a speculative side-channel attack, a secret is improperly accessed
and then leaked by passing it to a transmitter instruction. Several
proposed defenses effectively close this security hole by either
delaying the secret from being loaded or propagated, or by delaying
dependent transmitters (e.g., loads) from executing when fed with
tainted input derived from an earlier speculative load. This results
in a loss of memory-level parallelism and performance.

A security definition proposed recently, in which data already
leaked in non-speculative execution need not be considered secret
during speculative execution, can provide a solution to the loss
of performance. However, detecting and tracking non-speculative
leakage carries its own cost, increasing complexity. The key insight
of our work that enables us to exploit non-speculative leakage
as an optimization to other secure speculation schemes is that
the majority of non-speculative leakage is simply due to pointer
dereferencing (or base-address indexing) — essentially what many
secure speculation schemes prevent from taking place speculatively.

We present ReCon that: i) efficiently detects non-speculative
leakage by limiting detection to pairs of directly-dependent loads
that dereference pointers (or index a base-address); and ii) pig-
gybacks non-speculative leakage information on the coherence
protocol. In ReCon, the coherence protocol remembers and propa-
gates the knowledge of what has leaked and therefore what is safe
to dereference under speculation. To demonstrate the effectiveness
of ReCon, we show how two state-of-the-art secure speculation
schemes, Non-speculative Data Access (NDA) and speculative Taint
Tracking (STT), leverage this information to enable more memory-
level parallelism both in a single core scenario and in a multicore
scenario: NDA with ReCon reduces the performance loss by 28.7%
for SPEC2017, 31.5% for SPEC2006, and 46.7% for PARSEC; STT
with ReCon reduces the loss by 45.1%, 39%, and 78.6%, respectively.

This work is licensed under a Creative Commons Attribution International
4.0 License.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0329-4/23/10.
https://doi.org/10.1145/3613424.3623770

CCS CONCEPTS

• Computer systems organization → Superscalar architec-

tures; • Security and privacy→Hardware-based security pro-

tocols.

KEYWORDS

Speculation, side-channels, load pair, non-speculative leakage

ACM Reference Format:

Pavlos Aimoniotis, Amund Bergland Kvalsvik, Xiaoyue Chen, Magnus Sjä-
lander, and Stefanos Kaxiras. 2023. ReCon: Efficient Detection, Manage-
ment, and Use of Non-Speculative Information Leakage. In 56th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO ’23), Octo-
ber 28–November 01, 2023, Toronto, ON, Canada. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3613424.3623770

1 INTRODUCTION

Since the discovery of speculative side-channel attacks [24, 29], a
wide variety of transient execution attacks have been found [10,
22, 23, 25, 30, 32, 41]. These attacks vary in attack method, being
able to leak information through port contention [10], micro-op
caches [35], and reorder buffer contention [3] and even to break the
ARM Pointer Authentication [32]. To mitigate against speculative
side-channel attacks, a slew of speculative execution defenses have
been proposed [4, 5, 14, 28, 38, 39, 47, 52, 53, 56]. These defenses
differ in the threat model they operate under, their performance
overhead compared to an unsafe baseline, and the amount of modi-
fications they introduce to the system.

Early works, such as InvisiSpec[53] and Ghost Loads[38], as well
as later proposals such as Muontrap [5], provide solutions to block
speculative side-channel attacks in the cache hierarchy, but do not
eliminate many other side-channels [9].

Later works, such as Non-speculative Data Access (NDA) [52],
and Speculative Taint Tracking (STT) [56] improve on previouswork
by securing more speculative side-channels. Their common charac-
teristic is that they focus on delaying potentially dangerous, specu-
lative transmitter instructions. STT outperforms NDA through a
method called taint tracking, in which potential secrets are tracked,
and only possible transmitters are delayed. Still, STT is unable to
issue load-dependent instructions, since the second dependent load

https://orcid.org/0000-0001-6602-1988
https://orcid.org/0000-0003-4232-6976
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3613424.3623770
https://doi.org/10.1145/3613424.3623770

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Pavlos Aimoniotis, Amund Bergland Kvalsvik, Xiaoyue Chen, Magnus Själander, and Stefanos Kaxiras

is considered a transmitter. This results in a loss of instruction- and
memory-level parallelism and a corresponding loss in performance.

To recover some of the performance overhead that these defense
proposals introduce, several optimizations have been proposed.
They either rely on compiler support [48, 58], or modifications of
the core microarchitecture and of the memory hierarchy [4, 55].
We take a different approach to the optimization of secure specu-
lation schemes by proposing to efficiently detect non-speculative
leakage and use this information to lift security mechanisms for
safe speculative loads.

Our approach is based on a new security definition concerning
the exposure of secrets, proposed by Choudhary et al. in Speculative
Privacy Tracking (SPT) [14]. Under this definition, “any data that
can leak through the program’s non-speculative execution should not
be treated as secret during the program’s speculative execution” [14].

SPT leverages this security definition to provide comprehensive
mitigation for speculative side-channels. More specifically, SPT pro-
poses continuous taint tracking that spans all execution (both non-
speculative and speculative) to detect and track non-speculative
leakage. Assisted by a sophisticated forward and backward untaint
mechanism, SPT maximizes the amount of non-speculative leakage
detected. However, this requires changes of significant complexity
in the core. Moreover, SPT protects secrets loaded in registers prior
to speculative execution, albeit at a relatively steep performance
cost. Register protection, however, is not a requirement to eliminate
universal read gadgets that can leak all memory [14], which is the
main focus of our work. Besides, non-speculatively accessed secrets
can be protected by other means [54], which renders such high-cost
register protection mechanism less appealing for our purposes.

Building on the SPT security definition, we make the following
observation: A large part of the information leakage prevented by
secure speculation schemes, such as STT and NDA, simply comes
from load pairs that dereference pointers or index base-addresses. In
the interest of conciseness, for the remainder of this paper, we will
liberally use the term pointer to refer to either an (8-byte) address
loaded from memory or an (8-byte) integer index that is loaded
from memory and added to a (constant) base address. These two
cases are indistinguishable in our approach. Similarly, we use the
gerund dereferencing to encompass both pointer dereferencing
and base-address indexing.

Moreover, trying to prevent exactly this type of leakage is what
causes a significant performance loss in secure schemes. While
program execution may leak (non-speculatively) in many different
ways and through many different side-channels, we focus exclu-
sively on exploiting the non-speculative leakage due to load pairs.

The focus on load pairs enables us to distill the detection and
management of non-speculative leakage (that is highly complex
in the general case) into two simple functions: i) observe a load
pair dereferencing pointers, and ii) mark this particular pointer’s
value as safe to dereference under speculation. If two loads execute
non-speculatively, where the second load dereferences the value of
the first load, then our approach, called ReCon, reveals the value of
the first load as public. If a value has not been revealed or is changed,
it must be concealed as secret. In ReCon, we mark the address that
contains a revealed or concealed value, correspondingly, as such.

Consider the following example:

// Non -speculative execution

// Address 0x13 may contain a secret

PC1: load r1, [0x13]

PC2: load r2, [r1]

// but the secret at 0x13 is now revealed

// Speculative execution

if(cond){

PC3: load r3, [0x13]

// It is safe to pass the revealed

// value at 0x13 to a transmitter

PC4: load r4, [r3]

}

Here, PC2 dereferences the value of the PC1 load (i.e., uses the value
stored at address 0x13 as an address), revealing this information
to the memory hierarchy. Committing this non-speculative access
(PC2), as part of the intended program execution, means that the
value stored at 0x13 cannot be considered a secret any longer.
ReConmarks the memory location 0x13 as revealed. This holds true
until the value at 0x13 is updated by a store instruction, in which
case, the memory location 0x13 would be marked as concealed.
Speculatively reading from the revealed memory location 0x13 (e.g.,
by the PC3 load), means that there is no need to apply speculative
defenses and the dependent PC4 load can dereference the value and
execute without leaking anything that is not already public.

A further insight that drives our work concerns the preserva-
tion and propagation of the conceal/reveal information throughout
the cache hierarchy: it is possible to propagate the information
efficiently via the coherence protocol. We tag cache lines with re-
veal/conceal information, and we piggyback this information on the
coherence transactions of a standard directory MESI protocol (or
similar). Coherence handles the updates to the value of the pointer,
at the same time resetting the leakage information as needed. We
explain this in Section 5.3 where we show that without modifica-
tions to the base coherence protocol (only adding conceal/reveal
information on top of it), we can effectively manage leakage in-
formation throughout a multicore cache hierarchy for both single-
and multi-threaded workloads.

The overall approach, called ReCon (Reveal/Conceal), is an effi-
cient, low-complexity technique for detecting revealed addresses
from non-speculative pointer dereferencing, for tracking revealed
addresses throughout a multicore cache hierarchy, and for optimiz-
ing secure speculation schemes (Section 4 and Section 5).

In this work, we apply ReCon on STT and NDA and evaluate
the resulting schemes with benchmarks from the SPEC2017 and
SPEC2006 benchmark suites (Section 6). Our results show that
ReCon reduces the overhead over the unsafe baseline from 13.2%
to 9.4% and from 8.9% to 4.9% on SPEC2017, and from 10.4% to 7.2%
and from 8.1% to 5% on SPEC2006, when applied on-top of NDA
and STT, respectively. We also evaluate parallel benchmarks from
the PARSEC benchmark suite, and we observe a 46.7% and 78.6%
reduction in the overhead incurred in total execution time, for NDA
and STT, respectively.

ReCon: Efficient Detection, Management, and Use of Non-Speculative Information Leakage MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

2 BACKGROUND

In this section, we describe the previous work that ReCon leverages
to enable safe execution of loads that access revealed addresses.

2.1 Non-speculative Data Access (NDA)

Non-speculative Data Access (NDA) [52] defends by blocking the
propagation of secrets at the earliest possible stage. While NDA
proposes several variations of its central defense mechanism, we
focus on the strategy labeled permissive propagation.

In permissive propagation, potential secrets can be acquired by
speculative load instructions, but the secrets are not allowed to
propagate to dependent instructions, i.e., broadcast is delayed until
the originating instruction is non-speculative. Hence, there is no
possible way to expose potential secrets. NDA does not require any
extra modification to handle either explicit or implicit channels, as
the potential secrets are never released into the rest of the processor
core in any way. This is in contrast to STT [56] and SPT [14],
which have to use taint tracking to keep track of the propagation
of potential secrets to dependent instructions, and need to handle
both explicit and implicit channels when inputs are tainted.

While NDA limits instruction level parallelism by not propagat-
ing the results of load instructions, it achieves the same amount of
memory level parallelism as STT [56] (dependent loads are blocked
in both) while proposing a far simpler scheme. However, blocking
all non-transmitting instructions that depend on speculative load
values incurs larger performance penalties.

2.2 Speculative Taint Tracking (STT)

Speculative Taint Tracking (STT) [56] is a state-of-the-art safe
speculative execution scheme due to its performance and versatility.
STT relies on two fundamental principles: Firstly, all instructions
that do not have a dependency originating from a load instruction
are allowed to execute as normal, including loads. Second, it delays
speculative transmitting operands whose execution depends on
a speculatively loaded value until the value is confirmed to be
non-speculative and therefore not a secret.

STT uses a taint tracking mechanism, similar to dynamic in-
formation flow tracking (DIFT) [45], to prevent the execution of
transmitting instructions that depend on speculatively loaded val-
ues. STT taints the output register of a speculative load instruction,
or any instruction dependent on tainted data. STT automatically un-
taints the destination register and all tainted registers that originate
from this destination register, as soon as the corresponding load
instruction becomes safe, i.e., when it becomes non-speculative.

STT also provides an extensive analysis of explicit and implicit
channels, which respectively, directly and indirectly, can be used
to leak secrets, such as in some Spectre variants [24] (explicitly)
and SmotherSpectre [10] (implicitly). To prevent the use of explicit
channels, STT delays the execution of any transmit instruction
whose operands are tainted. This means that any instruction with
tainted input will not be executed until its inputs are no longer
tainted. To prevent the use of implicit channels, STT ensures that
the program control flow is not influenced by tainted data. This
means that branch predictions can still occur as normal, but the
resolution of branch predictions, whether correctly or wrongly
predicted, is delayed until the branch inputs are untainted.

2.3 Speculative Privacy Tracking (SPT)

Speculative Privacy Tracking (SPT) [14] is a defense mechanism
that offers even more comprehensive protection against speculative
side-channels, compared to NDA and STT. SPT shares similarities
with STT, as they are both schemes based on DIFT [45], however,
SPT protects all leakage under speculation, including register val-
ues that were set pre-speculation and have not leaked their values
(non-speculative secrets). SPT refers to the taint tracking mech-
anism of STT as s-taint, to differentiate it from their proposed
taint tracking mechanism. While s-taint focuses on speculative
tracking through registers, SPT proposes a global, continues taint
tracking mechanism that also propagates taint/untaint information
through the memory hierarchy. It also introduces novel ideas to effi-
ciently taint and untaint instructions. The taint trackingmechanism,
proposed by SPT, controls both non-speculative and speculative
execution and is able to protect secrets that reside in registers be-
fore speculation. Also, the taint tracking mechanism enables SPT
to leverage their key insight: “any data that can leak through the
program’s non-speculative execution should not be treated as secret
during the program’s speculative execution”.While SPT can main-
tain taints in both non-speculative and speculative execution, it
can dynamically untaint and thus execute instructions normally
under speculative execution. Whenever SPT identifies leaked data,
its untainting mechanism untaints both older and younger depen-
dent tainted instructions. SPT protects against the leakage of all
non-speculative secrets — addresses that have never leaked their
values non-speculatively.

3 THREAT MODEL

In the following section, we outline ReCon’s threat model, specifi-
cally how it integrates with the STT and NDA threat models, and
the modifications ReCon makes to the visibility of potential secrets.

3.1 STT and NDA Integration

ReCon is a performance optimization that is applied on top of se-
cure speculation mechanisms, e.g., NDA or STT. The underlying
secure mechanism maintains its entire threat model except for val-
ues that previously have been made public and, hence, not guaranteed
to be protected under speculation by the secure mechanism. More
specifically: In both NDA and STT secrets are defined as values that
the core should not be able to access, and is only able to access as
a result of erroneous speculation, i.e., potential secrets are specu-
latively accessed values that might be squashed. ReCon, similarly
to SPT [14], relaxes this definition by excluding values that have
already been made public through non-speculative execution.

Regarding the threat models of STT and NDA with ReCon we
note the following:
Register Protection: For both STT and NDA, values that reside
in registers before the point of speculation are not considered to be
potential secrets, as these are accessible without speculation, and
are therefore part of normal execution. ReCon does not affect this
property, i.e., does not add protection for registers.
Explicit and Implicit Channel Protection: STT delays potential
transmitters to defend against explicit channels. For implicit chan-
nel mitigation, STT ensures that the control flow is not influenced
by tainted data. NDA delays the propagation of a speculative load

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Pavlos Aimoniotis, Amund Bergland Kvalsvik, Xiaoyue Chen, Magnus Själander, and Stefanos Kaxiras

[a]

[val1]

con: val1

LD3[a] LD4

val13 4
LD1[a] LD2

1

rev: val1

(rev/con:) val3

LD6[a] LD7

val2x 6

rev: val2con: val2

[val2]
(rev/con:) val4

ST val2,[a]

[val1] accessed

x
[a]

[val1]

con: val1

LD1[a] LD2

val1

rev: val1

(rev/con:) val3

ST val2,[a]

[val2] not accessed

(SQ/)SB x

(rev/con:) val4

LD5

re
ve

al

co
nc

ea
l

Speculation Speculation
val1

LD7

re
ve

al

Commit

Memory
[addr] status: value

re
ve

al

{[a] con: val2}

con: val2

ST exits SB

co
nc

ea
l

co
n.

Speculation

[val2]

val2

Notes: (re/con:) status is irrelevant;

LD3[a] LD4

val2x

offsets added to val1, val2 for address generation, omitted for clarity

2

5

7

8 9

10

Store Buffer and Store-to-Load forwarding TIME

[val2] not accessed

Figure 1: Execution overview of ReCon.

instruction, and thus it does not need special treatment for explicit
and implicit channels, as they cannot be formed. ReCon does not
affect either of them (for secrets that have not been made public).
Speculative Model: STT introduces two speculative models, Spec-
tre that considers only speculation cast by control flow instructions,
and Futuristic that considers an instruction speculative until it guar-
antees not to be squashed. ReCon can operate under any speculative
model, and it is not affected by the model choice. For evaluation,
we use only speculation cast by control flow and store instructions,
we elaborate more on that in Section 6.

Lastly, we do not examine potential issues stemming from simul-
taneous multi-threading (SMT) [50], as such features are typically
disabled in secure systems [33, 46], or not even supported (e.g.,
Apple M1 [18, 51]).

3.2 Conditional Security Guarantee

As described, ReCon removes protection from values that are al-
ready public information. The lack of protection for public infor-
mation enables some new forms of execution patterns that were
not previously possible in the underlying threat model. For ex-
ample, load-load pairs that have previously been observed non-
speculatively would be allowed to execute speculatively, as the
information is considered public under the threat model. Programs
that utilize secret-dependent non-speculative behavior are consid-
ered to have made their secrets public, even if such accesses were
attempted to be obfuscated. Take the following example:

1: for (i = 0; i < N; i++) {

2: tmp = AES_KEYS[i] // Obfuscate access

3: }

4: selector = key_selector[iteration] // Find key

5: key = AES_KEYS[selector] // Select key

The secret value, selector, is made public at line 5, in which ob-
servable program behavior is dependent on the selector value. This
means that the threat model does not consider future leakage of this
value as insecure, since it has been made public. Thus, it would be
possible to create speculative replay attacks to expose the value of
selector, leveraging a speculative gadget (similar to lines 4 and 5
in the example above) elsewhere in the code. The example attempts
to obfuscate which key is selected through accessing all possible
keys, but such methods are not considered secure in general.

Speaking generally, this means that programs that avoid secret-
dependent behavior, as recommended by modern secure program-
ming techniques, in their non-speculative execution will not have
their security premise changed under the ReCon threat model.
Observe a secure version of the previous example:

1: selector = key_selector[iteration]

2: key = 0

3: for (i = 0; i < N; i++) {

4: tmp = AES_KEYS[i] // Access all keys

5: // Constant time selection of key

6 // cmp=1 if i== selector else cmp=0

7: cmp = (1 - min(selector - i, 1))

8: mask = cmp * 0xFFFFFFFF

9: key |= mask & tmp

10: }

This version employs constant-time programming principles that
ensure that the secret, selector, is never part of observable pro-
gram execution. Such programming principles are endorsed by
industry leaders such as Intel [20] for secure applications.

Sandboxing: ReCon does not inherently support isolation be-
tween multiple sandboxes in the same process (address space). For
example, consider two sandboxes operating in the same process. As
public information can be accessed speculatively with ReCon, one
sandbox can access and speculatively “observe” public information
of the other sandbox. This “observation” would normally be pre-
vented by NDA or STT. Today, this is of less practical concern, as
sandboxes are separated in their own process, e.g., in web browsers
(Site Isolation) [34] or in the cloud [42].

4 RECON

In the following section, we describe the core premise of ReCon.
We describe i) how we use non-speculative leakage to improve the
performance of secure speculation schemes, ii) how we can detect
and capture this non-speculative leakage (reveal), and iii) how we
can ensure that new secrets are not accidentally leaked (conceal).

4.1 Overview

ReCon uses knowledge of prior non-speculative execution to alter
the execution of specific load instructions under speculation. The
goal is to lift speculative side-channel defenses for loaded values
that are safe to improve performance.

ReCon: Efficient Detection, Management, and Use of Non-Speculative Information Leakage MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

ReCon identifies pairs of dependent loads, in which the second
address is entirely dependent on the output value of the first load
(see 1○ in Figure 1), and marks this value as revealed when the
second load commits 2○. For now, assume that a bit associated with
each word in the cache hierarchy marks the word as revealed or
concealed. We discuss the details of the storage and transmission
of this information in Section 5.

This means that the value of the first load has leaked (non-
speculatively) as an address via a side-channel and should not
be considered a secret as defined by the SPT threat model [14].
Protecting this value under speculation is superfluous for security,
but harmful to performance.

ReCon essentially marks the address accessed by the first load
(LD1) as containing a revealed value, and leverages this knowledge
to disable security mechanisms for any load to this address 3○, as
these security mechanisms are detrimental to performance. The
value is only safe as long as it has not been changed, i.e., ReCon
marks the address of stores as concealed 5○.

ReCon tracks direct dependence load pairs (Section 4.3 and Sec-
tion 5.1), preserving the address of the first load (LD1) until the
non-speculative commit of the second load (LD2), and then marking
the corresponding word in the cache as revealed. Whenever a load
is performed to a revealed value, special handling appropriate to
the underlying security mechanism ensures that the revealed value
is treated as though it is non-speculative 4○, e.g., it does not cause
taints for STT, and can propagate immediately for NDA.

4.2 What Non-Speculative Leakage to Capture?

Non-speculative information leakage occurs as a result of changes
to the microarchitectural state that are visible to an attacker, such as
timing differences in execution. When disregarding approaches that
focus on energy usage or contention, microarchitectural changes
that leak information can only occur in two possible ways:

(1) through a data dependency between a load and a following
transmitter instruction, known as an explicit channel.

(2) through a control dependency where the different possible
paths result in different microarchitectural states, known as
an implicit channel.

ReCon efficiently captures non-speculative leakage to improve
the performance of an underlying secure speculation scheme. For
such a case, leakage from explicit channels is of the greatest inter-
est, because most of the performance loss in secure speculation
schemes comes from the reduction in memory-level parallelism, as
a consequence of preventing explicit channels [56]. Leakage from
control dependencies is harder to detect and causes less perfor-
mance degradation under secure speculation schemes [56].

Within explicit channel leakage, we focus solely on leakage
caused by dependent loads (load pairs), which is common through
pointer dereferencing. As we analyze in Section 6.2, this case consti-
tutes the majority of leakage caused by load instructions. Although
this leaves a subset of leakage undetected, this is not a correct-
ness issue for security; it only affects the attainable benefit we can
achieve. Comprehensive protection is provided by the underlying
secure speculation scheme that we are optimizing.

4.3 Direct Dependence Loads

Non-speculative leakage due to data dependencies can occur, e.g.,
when a load passes its value directly to another load, or when a
load gets its value manipulated by a sequence of instructions that
passes it to a subsequent load. Consider the following example:

PC1: load r1, [0x13]

PC2: load r2, [0x7]

PC3: add r3, r1, r2

PC4: load r4, [r3]

PC5: load r5, [r1]

Values are loaded (PC1 & PC2) from two addresses (0x13 and 0x7),
manipulated (PC3), and passed as an address argument to a third
load (PC4). PC4 is a transmitter instruction that leaks the addresses
0x13 and 0x7 through indirect dependencies. The value from ad-
dress 0x13 (loaded by PC1) is also passed as an address argument
to a fourth load (PC5). PC5 is also a transmitter instruction that
leaks address 0x13 through a direct dependence (meaning no other
instruction intervenes between the two loads). In this example, the
value stored in 0x13 is leaked both indirectly (through a depen-
dence tree that involve other instructions and, importantly, may
involve other loads) and directly (through a load-load pair without
any dependent intervening instructions). ReCon limits its detection
to only the leakage of load pairs with a direct dependence.

ReCon associates a leaked value with the address it is stored
at (e.g., 0x13 in the example). Establishing this association for an
arbitrary large indirect-dependence tree requires dynamic informa-
tion flow tracking [45] that extends arbitrarily long in the past and
may involve multiple loads and addresses (e.g., PC1 and PC2, 0x13
and 0x7, in the example above). In contrast, with exactly two loads
(PC1 and PC5) it is straightforward to unambiguously associate the
leakage to the address (0x13) in a simple and effective way.

Load addresses that are derived from a load with an offset, i.e.,
an immediate, still create a valid load-pair, as the introduction of
an offset does not affect ReCon’s overall security guarantee. Such
an offset is by definition always present, and calculating the value
of the secret is trivial. Consider the following example:

PC1: li r1, 0x13

PC2: load r2, [r1 + 0x10] // 0x10 is an offset

PC3: load r3, [r2]

Instead of revealing address 0x13, it reveals address 0x13+0x10. If
instead, the second load has an offset:

PC1: li r1, 0x13

PC2: load r2, [r1]

PC3: load r3, [r2 + 0x10] // 0x10 is an offset

The load pair now reveals address 0x13, as the offset is known.
ReCon is secure regardless of the proportion of total non-spec-

ulative information leakage it captures, as security is guaranteed by
the underlying secure speculative execution scheme, and ReCon is
only using already leaked information to reduce their performance
overhead. As such, ReCon has a trade-off between the design cost of
capturing information leakage, and the performance gain from us-
ing this leakage. ReCon uses this trade-off to capture most leakage
at a low cost by focusing on loads whose address is directly depen-
dent on another load without intermediaries, which comprises a

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Pavlos Aimoniotis, Amund Bergland Kvalsvik, Xiaoyue Chen, Magnus Själander, and Stefanos Kaxiras

majority of the total leakage of a program (Section 6.2). Detecting
the presence of such direct dependence load pairs is achieved in a
simple manner by checking to see if there is a dependence between
the destination register of a preceding first load and the source
register of a following second load.

We describe such an implementation in detail in Section 5.1.
Then, once the second load is committed, the leakage of the value is
known to be non-speculative, and the address of the value is marked
as revealed in the cache, which enables following load instructions
to that address to lift security mechanisms.

Insofar as CISC instructions are internally decoded into RISC
micro-operations, instructions such as the x86 arithmetic instruc-
tions with a memory-fetched input operand are broken into two
(or more) micro-operations where one of them is a load. This load
can participate in the formation of a load pair.

4.4 Concealing New Secrets

Once an address is revealed, it is guaranteed to be safe as long as its
contents do not change. A store to an address that has been revealed
breaks this condition, making the address unsafe again. In this sec-
tion, we describe how ReCon assures that revealed addresses turn
to concealed when they are changed. More importantly, conceal
operations work at any granularity (e.g., byte, sub-word, word, ...),
while revealing and using revealed data works only for aligned
addresses and at word granularity. This means that if any part of a
revealed word changes, the whole word becomes concealed.

4.4.1 Performed Stores. When a committed store instructionwrites
to its target address in the cache hierarchy (i.e., when the store is
performed), the new contents at this address have not been observed
non-speculatively (i.e., revealed through a committed load instruc-
tion) (5○ in Figure 1). For this reason, a store marks the address
as concealed, (no longer revealed) — the address contains a new
secret — which prevents future speculative loads from passing the
loaded value as an address to other instructions 6○. Upon commit
of a dependent load that uses the contents of the concealed address,
the address is marked anew as revealed 7○.

4.4.2 In-Flight Stores. We consider committed stores that reside in
the store buffer (SB) as not yet performed; stores in the store queue
(SQ), are in-flight stores that have not committed. Younger loads
receive their value forwarded from stores in the SB or in the SQ,
rather than from the L1 cache.

In ReCon, a store conceals its output in the SQ/SB (8○ in Figure 1).
Thus, a load always receives concealed data from store forwarding
and defenses cannot be lifted 9○. There may be a period where the
same data are known as concealed inside the core and revealed out-
side. This is inline with memory models that relax the 𝑠𝑡𝑜𝑟𝑒 → 𝑙𝑜𝑎𝑑

order and are read-own-write-early multi-copy atomic (rMCA) [49],
e.g., x86-TSO [43] or weaker memory models. The memory location
is concealed outside the core when the store exits the SB 10○.

4.5 Store-to-Load Forwarding

Store-to-load forwarding forms an implicit branch that can po-
tentially leak speculatively accessed secrets. The following section
describes how we ensure that ReCon does not leak potential secrets
through such implicit branches.

if (r1 < size) {

// Access

PC1: load r2, [r1]

PC2: store r3, [r2]

// [r4] is revealed

// Transmit

PC3: load r5, [r4]

PC4: load r6, [r5]

}

.

.

.

.

.

.

.

.

.

(a) Store-to-load forwarding

if (r1 < size) {

PC1: load r2, [r1]

PC2: store r3, [r2]

PC3:{ // Load behavior

impl-if {r2 == r4)

// Concealed

r5 = r3

impl-else

load r5, [r4]

}

PC4:{ // Load behavior

impl-if {r2 == r5)

// Concealed

r6 = r3

impl-else

load r6, [r5]

}

}

(b) Implicit channels

Figure 2: Implicit channels of store-to-load forwarding with

ReCon.

4.5.1 Without Memory Dependence Speculation. An unresolved
store forms a resolution-based implicit channel that is handled
by delaying loads until the store address is non-speculatively re-
solved [56]. In this case, ReCon has no effect.

4.5.2 With Memory Dependence Speculation. For a pair of depen-
dent loads (PC3 and PC4), two implicit channels are formed in the
presence of an older unresolved store (PC2), as shown in Figure 2.
With memory dependence speculation [15, 31], two memory de-
pendence predictions take place. The implicit channels also become
prediction-based channels that are mitigated by updating the pre-
dictor with non-speculative values [56].

As outlined in Table 1, there are four cases to consider: Either of
the two loads can be predicted to depend on the previous store (STF)
or on memory (MEM). The key takeaway is that what is observable
under STT and what is observable under ReCon differs only in
the first case, (assuming that address [r4] is revealed — otherwise
there is no difference). This is expected as if ld [r4] (PC3) is
observed and [r4] is revealed, ReCon allows ld [r5] (PC4) to
also be observed. This does not leak anything more than what has
leaked before. In case 2, the store forwarding passes a concealed
value to ld [r5] (PC4) preventing it from being observed both
in STT and ReCon. Similarly, for case 3 and 4, the store passes
a concealed value to ld [r4] (PC3, effectively reverting ReCon
to STT. Thus, in both STT and ReCon, the observable loads are
independent of the speculatively loaded secret (PC1), and the only
information that leaks, is the memory dependence predictions,
which are independent of the secret. A similar argument holds for
NDA permissive propagation [52].

ReCon: Efficient Detection, Management, and Use of Non-Speculative Information Leakage MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Table 1: Memory dependence prediction cases for the store

forwarding example of Figure 2.

Prediction STT ReCon
Case: PC3 PC4 observation observation
1 MEM MEM ld [r4], — ld [r4], ld [r5]
2 MEM STF ld [r4], — ld [r4], —
3 STF MEM —, — —, —
4 STF STF —, — —, —

5 IMPLEMENTATION

In this section, we describe how ReCon can be implemented. We
first describe how load pairs are detected, how revealed addresses
are tracked in the cache hierarchy, and finally how revealed ad-
dresses are exploited to lift security defenses for NDA and STT.

5.1 Detecting Non-Speculative Load Pairs

An address that is used by a direct dependence load pair is only safe
once the second load (LD2 in Figure 1) becomes non-speculative.
From a strict security perspective, the earliest that LD2 becomes
non-speculative is when the load has reached its visibility point [56],
i.e., it is bound to commit. Although a load can reach its visibility
point anywhere in the pipeline, for simplicity, we opt for imple-
menting load-pair detection in the commit stage. This has no impact
on security, as it only delays the revealing of the address and the
earliest point when security defenses can be lifted.

ReCon detects load pairs by including a table with, at most,
as many entries as physical integer registers (smaller tables are
possible and are evaluated in Section 6.6). Each table entry consists
of an active (A) bit and an address field. We call this table the load-
pair table (LPT), and it is accessed using the indices of the source and
destination physical registers of a committing instruction. Detecting
load pairs at commit, using physical registers, relieves us from
the burden of establishing the correct dependence when multiple
dynamic instances of the same load pair exist in the pipeline.

When a load commits, the LPT is accessed using both the desti-
nation register and the source register. For the destination register,
if the load address has not already been revealed, then the active bit
is set and the load’s address is written to the corresponding entry,
see 1○ in Figure 3. At the same time, the load checks the active bit of
its source address register 2○. If the active bit is set, then a load pair
has been detected and the load is the second load of the pair (LD2).
The committing load, then, marks the address that is stored in the
LPT entry (i.e., of the first load) as revealed. Revealed addresses are
tracked in the cache hierarchy, as described in the next section. If
the active bit is not set, then no further operations are performed.
The active bit is cleared for the destination register(s) of any other
instruction than loads that commit.

5.1.1 Multi-Source Load Instructions. Up to this point, we have
described how ReCon tracks load pairs where the second load has
a single direct dependence on an older load, i.e., the second load
having a single source register. Let us now consider more complex
instructions that might have multiple source registers, as commonly
found in the x86 instruction set.

A Address

load p2, [p6]

A1 Value of p6

2
?

Figure 3: The load pair table. p2 and p6 represent the renamed

physical registers, ’A’ is the active bit, and the ’Address’ field

holds the address accessed by a committed load.

Consider the following x86 assembly, which is the result of com-
piling the commented out code:

selector = key_selector[iteration]

output = AES_KEYS[iterator];

mov 0x0(,%rax ,8) ,%rax # %rax = key_selector

mov (%rdx ,%rax ,8) ,%rax # %rdx = AES_KEYS

At the first sight, one might conclude that the two instructions form
a load pair, as the second mov instruction has a direct dependence on
the first mov through register %rax. However, the actual behavior de-
pends on the underlyingmicroarchitecture and its micro-operations.
Such complex instructions are commonly decoded into multiple
simpler micro-operations. For the given example, the second mov
could be decoded into three micro-operations, as follows:

mov (%rdx ,%rax ,8) ,%rax

mul %rax ,8,%r1 # src1 ,src2 ,dst

add %rdx ,%r1 ,%r2 # src1 ,src2 ,dst

load (%r2),%r3 # src ,dst

In this case, ReCon would not detect a load pair since there is no
direct dependence between two load operations. If the underlying
microarchitecture instead support multi-source operations, such
that the second mov is decoded into a single micro-operation, then
a load-pair would be detected.

In the general case, the second load micro-operation can have as
many direct load dependencies as it has source operands, and a load
pair can be detected for each operand. This requires that a lookup
is made in the load pair table for each source operand to detect if
the source register is written by a load operation. Each load pair
can then be revealed by sending a reveal message to the L1. This is
not on the critical path and such messages can be dropped since
not revealing an address is only a potential performance loss and
is always secure to do. For this paper, we focus on evaluating the
case where there exists only a single direct load dependence and
leave multi-source operations for future work.

5.2 Tracking Revealed/Concealed Addresses

ReCon tracks revealed addresses by associating a bit vector with
each cache line to mark the data words that have been revealed by
committed loads. The vector has as many bits as the total number of
words that fit in a cache line (e.g., eight bits for eight 8-byte words
in a 64-byte cache line—see Section 6.7 for details).

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Pavlos Aimoniotis, Amund Bergland Kvalsvik, Xiaoyue Chen, Magnus Själander, and Stefanos Kaxiras

A newly fetched cache line from memory has all its words
marked as concealed. When the second load (LD2) of a load-pair
commits, the address accessed by the first load (LD1) is marked as
revealed. LD2 sends a reveal request to the L1 cache to reveal the
address by setting the bit of the corresponding word in the cache
line. Similarly, upon the commit of a store instruction, the bit of
the corresponding word is cleared, stating that a new value exists
in the data word that has not yet been revealed.

5.3 ReCon Coherence

A similar bit-vector approach to maintain reveal/conceal informa-
tion per address, is followed in SPT to keep taints/untaints, but
instead of keeping the bit-vector with every cache line in the L1,
a different structure, mirroring the L1, keeps the bit-vectors sepa-
rately [14]. While the SPT approach has the advantage of i) bound-
ing the absolute storage cost, and ii) not changing the L1, it has two
important disadvantages when it comes to using non-speculative
leakage information for optimization: First, leakage information is
private to each core and cannot be shared. Today, several important
workloads are multithreaded (e.g., browsers) to be able to extract
performance out of multicores. In ReCon, we want to take advan-
tage of the information gained in one core to optimize the execution
of another core as the security model applies for a whole process
(subject to the restrictions discussed in Section 3). Second, naïvely
propagating this information to a shared LLC, e.g., via evictions, is
not coherent and may result in a loss of information.

A contribution of ReCon is to solve this problem by assigning
the non-speculative leakage information as meta-information that
is carried and maintained by the coherence protocol. For this work,
we assume a standard directory MESI protocol. A coherent version
of the ReCon bit-vector is kept with each directory entry. The
bit-vector of a cache line is transferred with the standard coherent
transactions of the protocol between the directory and the private
caches and between the private caches themselves.

Consider a single cache line, shared by threads of the same
process (same address space) running on two different cores with
private L1 caches. Each L1 receives a copy of the directory bit-vector,
initially all set to concealed. Each thread can independently reveal
words in this cache line in its L1 bit-vector, without knowledge
of the other thread’s bit-vector state. At this point, the revealed
information can only be used locally by each core. However, upon
eviction, the directory needs to be notified that the particular L1
is no longer a sharer (for this cache line). It is at this point that
the ReCon bit-vector is transferred back to the directory and is
logically Or’ed with the bit-vector that exists there. Or-ing the L1
bit-vector with the directory bit-vector guarantees that information
is preserved across consecutive evictions from different L1s. Any
core that reads the cache line from the directory, now learns of all
the revealed addresses accumulated in the directory bit-vector.

Consider, now, what happens when a core conceals an address.
Recall that to conceal an address, its contents must change, i.e.,
the address must be written by a store. For this, the L1 needs to
have write permissions to its cache line. If the cache line is not
already in state M (Modified), the core must ask the directory to

grant write permission and invalidate any other sharers.1 In ReCon,
the writer assumes control of the directory bit-vector and owns the
only coherent copy of the ReCon bit-vector until either: i) writes it
back to the directory (overwriting the directory bit-vector with its
own copy); ii) writes it back to the directory and passes it on to a
new reader on a downgrade; or, iii) passes it on to the next writer
on an invalidation (from the new writer). Until the writer gives up
its write permission: i) it can reveal as many addresses in the cache
line as it wants (which no other core can do at the same time); and
ii) it is the only core that can supply a valid bit-vector to (a request
from) a new reader or a new writer.

5.4 Using Revealed Addresses

Load instructions that perform a cache access, eventually return the
corresponding ReCon bit in the cache hierarchy for that word. If
the value has already been revealed, then the core can immediately
disable any applied speculative restrictions associated with the
loaded value. For NDA [52], the loaded value of revealed addresses
is immediately propagated to dependent instructions. Similarly,
for STT [56], any load that receives a revealed value untaints its
destination register, which enables the value to be used by any
transmitting instruction. Both techniques benefit from increased
instruction and memory-level parallelism.

6 EVALUATION

In this section, we describe our methodology, we characterize the
non-speculative leakage, and we present ReCon’s overall results.

6.1 Methodology

We implement the evaluated security schemes on the latest version
of the gem5 [12] simulator (version 22) using Ruby and SLICC to
model the memory system with a three-level MESI coherence pro-
tocol (with an in-cache directory), on an infrastructure that shares
implementations for NDA, STT, and ReCon. We use GARNET [1]
to model the interconnect.

Speculation state is tracked through shadows [38, 39]. We evalu-
ate only speculation that is triggered by control and store instruc-
tions [52], similarly to other speculative side-channel threat mod-
els [14, 53, 55, 56], which only track control instructions, as this is
the type of speculation leveraged by Spectre attacks [10, 22, 24, 41].
We do not consider speculation triggered by load instructions and
instructions that can raise an exception for the following reasons:
there is not a discovered attack under speculation caused by load
instructions, and recovering the performance lost from this type of
speculation is a solved problem [36, 48, 57], and speculation caused
by instructions that can raise an exception lie on a different spec-
trum of attacks [29]. Thus, we are closer to the Spectre threat model
that tracks only control shadows [56], rather than the Futuristic
threat model that considers all instructions speculative until they
reach their visibility point [56].

We use the SPEC2017 speed [17] and SPEC2006 [16] CPU bench-
mark suites as a representative for single thread applications, and

1The private ReCon bit-vector of an invalidated reader is lost in the invalidation. A
potential optimization would be to try to preserve it, but we have omitted this for
simplicity.

ReCon: Efficient Detection, Management, and Use of Non-Speculative Information Leakage MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Figure 4: Percentage breakdown of leakage out of all address space.

Table 2: gem5 Configuration

Processor
Core 3GHz

(4-cores for parallel benchmarks)
Decode width 8 instructions
Issue / Commit width 8 instructions
Instruction queue 160 entries
Reorder buffer 352 entries
Load queue 128 entries
Store queue/buffer 72 entries
Memory
L1 D & I caches 64KiB & 64KiB, 8 ways

2 cycles roundtrip data
L2 cache 2 MiB, 16 ways

6 cycles roundtrip
LLC cache 16 MiB, 32 ways

(4-cores: 4 MiB each)
16 cycles roundtrip

Coherence Protocol 3-level MESI
Coherence Directory In-Cache (LLC)
Cache line Size 64 bytes
Memory 8 GiB

use the PARSEC [11] benchmark suite to evaluate parallel bench-
marks. For the SPEC2017 benchmarks, we run detailed full system
(FS) simulations using the out-of-order (OoO) processor model, ex-
tracting simulation phases with the use of simpoints [44].We collect
simpoints for the first 100 billion instructions (under FS simulation).
We take up to five simpoints per benchmark for an interval of 100
million instructions. We start gathering statistics after running 50
million instructions of a detailed warm-up, so that our mechanism
that is implemented in OoO is also included in the warm-up. For
the SPEC2006 benchmarks, we run in system emulation (SE) mode
using the out-of-order (OoO) processor model. We warm up the
processor for 3 billion instructions, and we gather statistics for the
next 1 billion instructions. For the parallel benchmarks, we fast-
forward into the region of interest (ROI) in system emulation (SE)
and run for 100 million instructions. We present instructions per
cycle (IPC) as a performance metric for SPEC2017 and SPEC2006,
and ROI execution time for PARSEC [6].

We also use Clueless [13], an open-source tool that measures
the exposure of a program’s memory to cache side-channels by
applying a global DIFT mechanism, to better understand the gen-
eral behavior of non-speculative leakage. Clueless is a trace-based
tool that does not model speculative execution, and thus models
the non-speculative behavior of the program. Clueless tracks dy-
namic instruction dependencies (through registers and memory)
and detects data values that are turned into addresses. These are
considered leaked values and their address in memory is tagged as
a leakage point. Newly written values revert the address back to a
non-leaked status. Thus, Clueless dynamically records the portion
of memory that has leaked at any specific moment.

Because non-speculative leakage due to direct-dependence load
pairs (Section 4.3) is a subset of the leakage captured by DIFT, we
modify Clueless to also provide statistics specifically for direct
dependence load-to-load dereferencing. We also modify it from
being pin-based to trace-based, andwe use SPEC2017 and SPEC2006
traces provided by the ChampSim [19] simulator for general studies.

6.2 Leakage Breakdown

To understand the direct-dependence load-to-load leakage, we re-
port results from Clueless. In Figure 4, we show the average per-
centage of memory addresses that are identified as leakage points.
We show the results both for all captured leakage (DIFT) and for
direct dependencies (load-load pairs). We observe that across the
SPEC2017 and SPEC2006 benchmark suites, on average, 53% of the
address space leaks its content (when we capture leakage by DIFT),
while direct load-to-load dereferencing is responsible for 32% of
the address space that has leaked its content. In other words, direct
dependencies cover 60% of the total leakage. In fact, we find that
in some cases there is negligible additional leakage occurring if
we measure it with DIFT, and the program’s leakage is solely due
to direct-dependence load-to-load dereferencing (e.g., gcc, imagick,
mcf, and xalancbmk from SPEC2017).

6.3 Performance Results

Figure 5 and Figure 6 show the performance results of NDA/STT
and ReCon for single thread performance as instructions per cycle
(IPC) normalized to the unsafe baseline processor.

The more strict NDA introduces a 13.2% performance degra-
dation on average, while STT introduces a degradation of 8.9%
compared to the unsafe baseline across the SPEC2017 benchmarks.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Pavlos Aimoniotis, Amund Bergland Kvalsvik, Xiaoyue Chen, Magnus Själander, and Stefanos Kaxiras

Figure 5: Normalized IPC to unsafe baseline of NDA+ReCon, on SPEC2017 (upper) and SPEC2006 (lower).

Figure 6: Normalized IPC to unsafe baseline of STT+ReCon, on SPEC2017 (upper) and SPEC2006 (lower).

Figure 7: Amount of tainted loads on SPEC2017 of STT (full

column) and ReCon (hatched part), normalized to STT.

For the SPEC2006 benchmark suite, NDA introduces an overhead
of 10.4%, while STT introduces an overhead of 8.1%, on average.

ReCon’s purpose is to reduce the number of tainted (STT) or not-
propagated (NDA) load instructions, and thus increase performance.

Figure 7 shows the reduction in tainted load instructions for ReCon
normalized against the total number of tainted loads for STT. We
see significantly fewer, 43.8% on average, tainted loads with ReCon.
This is a natural consequence of the mechanism, as ReCon untaints
the destination register, and thus does not cause dependent loads
to be tainted. ReCon’s improvement for NDA are nearly identical,
since both STT and NDA apply their defenses to the same loads
(i.e., loads depending on speculatively loaded values), and ReCon
applies its optimization to the same set of loads. We have therefore
omitted the data for NDA to simplify the figure.

For SPEC2017, ReCon faces a performance overhead of 9.4% and
4.9% over the unsafe baseline processor, reducing it by 28.7% for
NDA and 45.1% for STT, respectively. For SPEC2006, we observe
similar results, with an overhead of 7.2% and 5%, which translates
to a reduction of 31.5% and 39% for NDA and STT, respectively.

Notice that some benchmarks face a very small absolute number
of tainted loads (i.e., bwaves, imagick, and lbm from SPEC2017)

ReCon: Efficient Detection, Management, and Use of Non-Speculative Information Leakage MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Figure 8: Normalized execution time of parallel benchmarks.

and they do not face a performance degradation on either NDA or
STT (Figure 5 and Figure 6), leaving no room for ReCon to boost the
performance. Another notable mention is that some benchmarks
have a similar absolute number of tainted loads (i.e., leela and
nab), yet the former faces a performance reduction of 6.8% while
the latter only 2.7% (on STT). This observation shows that some
tainted loads are more critical than others, and reducing the number
of tainted loads does not guarantee analogous performance gains.
For example, ReCon recovers a significant amount of performance
(from 64.1% to 88.5%) by reducing the number of tainted loads
by 61% for xalancbmk (SPEC2017) as compared to STT, while for
perlbench (SPEC2017), ReCon improves the performance from
94.6% to 96.4% by reducing a similar amount of tainted loads (59%).
The former reduces the overhead by 67.9% while the latter by 34.5%,
yet the reduction in tainted loads is similar (with the latter having
slightly more reduction). This can be seen in Figure 7.

For the PARSEC benchmark suite, NDA increases the total exe-
cution time by 9.7% and STT by 4.4%, as shown in Figure 8. ReCon
reduces the execution time overhead by 46.7% and 78.6%, resulting
in a slowdown of 5.2% and 1% over the unsafe baseline, respectively.

6.4 Leakage/Performance Correlation

To understand how detected leakage from load pairs correlates
with the performance gains of ReCon, we analyze benchmarks
that experience at least a 5% performance degradation with STT for
SPEC2017, namely cactuBSSN, deepsjeng, mcf, leela, omnetpp,
perlbench, and xalancbmk. The 5% performance degradation limit
reduces noise from benchmarks where STT and ReCon marginally
affect performance.

Figure 9 illustrates the correlation between non-speculative leak-
age (as observed by Clueless) and performance (as observed by
ReCon). The figure shows the ratio of leakage captured by direct-
dependence load pairs to all leakage captured by Clueless’ global
DIFT mechanism. A perfect ratio means that all leakage is captured

Figure 9: Correlation between percentage of captured leak-

age (direct load pairs / all leakage) and overhead reduction.

(SPEC2017 benchmarks with more than 5% performance

degradation in STT shown.)

Figure 10: Normalized IPC comparison of ReCon when ap-

plied to different cache levels.

by load pairs and would be represented by a full column. Bench-
marks are sorted from higher overhead reduction to lower overhead
reduction (left to right). We see that ReCon successfully recovers
performance when the leakage is highly dependent on load pairs.
The lower the ratio of load-pairs to total leakage, the lower the
performance gain (e.g., cactuBSSN and deepsjeng). Moreover, the
amount of performance gains is dependent on two things: i) the rate
at which pointers are reused (i.e., previously seen pointer derefer-
encing should be repeated), and ii) the phase the pointers are reused:
ReCon requires the program to experience speculative execution
when reusing them (and thus the underlying secure speculation
scheme is applied).

6.5 L1 and L2 bound ReCon

ReCon is a flexible optimization that can be applied to multiple
cache levels. While the default design applies the mechanism to
all levels (L1, L2, and LLC), we examine the behavior when it is
applied to only the first cache level, and on the first and second
cache level, thus introducing a low implementation overhead.

Figure 10 shows the evaluation for STTwith the SPEC2017 bench-
mark suite. We observe that some benchmarks, such as cactuBSSN
and leela, recover the majority of the performance loss only by
using the L1 cache, while others, such as gcc, mcf, omnetpp and

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Pavlos Aimoniotis, Amund Bergland Kvalsvik, Xiaoyue Chen, Magnus Själander, and Stefanos Kaxiras

Figure 11: Normalized IPC of STT+ReCon with various sizes

of Load-Pair Table (LPT).

xalancbmk, need to cover a larger working set size and thus lever-
age the L2 and LLC.

Overall, applying ReCon only to the L1 data cache reduces the
overhead introduced by STT from 8.9% to 7.3%, and applying ReCon
to the L1 and L2 reduces the overhead further to 6.3%.

6.6 Load-Pair Table Sensitivity Analysis

The load-pair table (LPT), as described in Section 5.1, uses as many
entries as physical registers to store the address accessed by a load
instruction. While the number of registers is architecture-specific,
modern architectures commonly have around 200 integer registers.
More specifically, Intel Skylake has 180 integer registers [21] and
AMD Zen 3 and Zen 4 has 192 [7] and 224 [8] integer register, re-
spectively. For that many registers, the LPT would translate to a
size slightly bigger than 1KiB (we elaborate more on the implemen-
tation overhead in Section 6.7). As direct-dependence load pairs are
usually near each other (in program order and inside the pipeline),
just a few entries are enough to capture the majority of load pairs.

Figure 11 shows the results of a sensitivity study where we
successively reduce the LPT size by a factor of two. The table is still
indexed by the destination and source registers, but now conflicts
are possible, as different physical registers map to the same entry.
To ensure correctness, we tag LPT entries with the physical register
index. The results show that the only benchmark that is significantly
affected by the LPT size, experiencing increasingly many conflicts
with every reduction, is mcf. We evaluate all the configurations
between LPT/2 and LPT/64. They are consistent with the trend
shown in the figure, thus, we omit them to simplify the presentation.

Overall, we observe that reducing the LPT size marginally affects
performance. This behavior verifies our assumption that load pairs
consist of loads that are close to each other.

6.7 Implementation Overhead

ReCon is a low-complexity approach, and its implementation over-
head is primarily a storage overhead in the cache hierarchy and
directory. More specifically, ReCon makes changes in the core and
the cache hierarchy as follows.

In the core, ReCon adds a load-pair table in the commit stage to
propagate the accessed address of committed loads. The load-pair
table (LPT) consists of an address (48 bits) and a valid bit (1 bit) per
entry. For example, 180 registers (Intel Skylake [21]) would require
a 1.1KiB LPT, while 224 registers (AMD Zen 4 [8]) would require
a 1.37KiB LPT. As explained in Section 6.6 this could be further

reduced to 641 bytes and 798 bytes, respectively, by shrinking it to
half and adding an extra eight bits per entry (tag for register).

ReCon works with aligned 8-byte memory locations, to limit
the total number of reveal bits required per cache line. It does
not do misaligned or sub-8-byte reveal operations and keeps the
values concealed in such cases. In the cache hierarchy, ReCon
adds a byte per 64-byte cache line in the private caches and in the
directory to track the revealed/concealed state of memory locations
(eight revealed memory locations can fit at maximum in a 64-byte
cache line). We evaluate an in-cache directory, which makes the
storage cost of the directory bit-vectors proportional to the LLC
size. This translates to an overhead of less than 1.5% of the total
cache storage (private caches and LLC, considering the storage cost
of data + tags + coherence state). For a high performance system,
one can consider a decoupled directory that is, e.g., 2× or 4× over-
provisioned compared to the aggregate size of the private caches.
In that case, the storage cost of the directory bit-vectors becomes
proportional to the aggregate size of the private caches.

7 RELATEDWORK

Several approaches have been proposed to defend against specula-
tive side-channels. As already mentioned, NDA [52] and STT [56]
use the same principles, with NDA being more strict by not allow-
ing potential secrets to propagate to any dependent instructions,
achieving reduced instruction level parallelism, while STT applies
a taint tracking mechanism to propagate secrets and delay only
dependent transmitting instructions. DoM [39, 40], instead of track-
ing potential secrets and blocking transmitters, delays all loads that
miss in the (L1) data cache, as hits do not produce timing effects.
This eliminates all observable cache timing differences. Mecha-
nisms such as InvisiSpec [53], Ghost Loads [38], MuonTrap [5],
and GhostMinion [4] focus on hiding speculative execution by
using speculative buffers that temporary store speculative infor-
mation, and modifying the memory system to comply with this
invisibility. CleanupSpec [37] focuses on restoring microarchitec-
tural states after misspeculation is verified, effectively scrubbing
potential secrets from the observable state. There have also been
several attacks [2, 3, 9, 27] that target existing schemes, but ReCon
does not either affect or enhance their effectiveness as they can be
applied independently.

The above solutions introduce varying performance overheads
and implementation complexities. To recover some lost perfor-
mance, several optimizations have been proposed.

Speculative Data-Oblivious execution (SDO) [55] is an opti-
mization to STT that uses prediction to make speculative execution
independent of speculatively accessed values. In contrast to ReCon,
SDO focuses on STT, and cannot be readily combined with other
schemes as, for example, with NDA. NDA does not propagate the se-
cret, and thus SDOwould be unable to predict the cache level hit for
dependent loads. SDO on STT provides a 44.4% reduction in over-
head with the Spectre threat model and 36.3% with the futuristic
threat model, when protecting against memory side-channels (load
instructions). While our evaluation differs (e.g., we use SPEC2017
speed benchmarks instead of rate, and with an entirely different set
of simpoints), we report a 45% reduction in overhead for a threat
model that lies between the Futuristic and the Spectre threat model

ReCon: Efficient Detection, Management, and Use of Non-Speculative Information Leakage MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

(36.3% and 44.4% reduction in SDO, respectively). Not only that, but
the two optimization mechanisms are orthogonal and can cooper-
ate, as ReCon applies on untainted loads to untaint their dependent
loads, while SDO applies on tainted loads to predict their cache
level hit. Thus, they can both be applied at the same time, ReCon re-
ducing the number of tainted load instructions and SDO recovering
performance by predicting tainted loads.

Other optimizations: InvarSpec[58] detects load instructions
that are guaranteed to commit regardless the outcome of spec-
ulation, lifting their protection while still speculative. InvarSpec
operates together with secure speculation schemes that protect
against all speculative data leakage (e.g., InvisiSpec [53]). While
it can also be adapted for schemes like STT and NDA, the perfor-
mance gains are unknown as those schemes already explore some
memory-level parallelism by allowing independent loads to hap-
pen while speculative. This is a major performance bottleneck for
DoM [39], for example, which delays all loads that miss in the first
level cache and InvarSpec [58] enables the execution of some of
those specific misses.

Clearing the Shadows [48] focuses on instruction re-ordering to
eliminate speculation as early as possible. InvarSpec and Clearing
the Shadows are optimizations that leverage compilers and hard-
ware/software co-design, unlike our approach, which only affects
the hardware implementation.

Pinned Loads [57] focuses on speculation and the overhead
caused by memory re-ordering, proposing a mechanism to resolve
memory violations as early as possible, to enable the execution
of protected loads much earlier. Both Clearing the Shadows [48]
and Pinned Loads [57] focus on eliminating speculation and thus
boosting performance by assigning less work to the underneath
mitigation. This is different from our work, where we actually try
to optimize the existing schemes.

Doppelganger Loads [26] is an optimization that also leverages
non-speculative information, but instead of directly connecting it
to leakage (load pairs), it uses the addresses accessed by committed
loads to train an address predictor and safely predict the address of
subsequent speculative loads.

8 CONCLUSION

We propose ReCon, an efficient, low-complexity approach to lever-
age knowledge of non-speculative leakage for the purpose of relax-
ing defenses in secure speculation mechanisms, such as NDA and
STT, that would otherwise protect data that have already leaked.

Based on the observation that an address accessed by a load and
transmitted by a second dependent load, leaks the value at this
address, ReCon focuses exclusively on detecting non-speculative,
direct-dependent load pairs, shedding all the complexity of a general
dynamic information flow tracking (DIFT) tracking mechanism
proposed previously. Furthermore, ReCon leverages the existing
cache coherence infrastructure (including the directory) to store,
share, transmit, and keep coherent the non-speculative-leakage
state of addresses. ReCon, depending on the underlying secure
speculation mechanism, enables the execution of load instructions
that would otherwise be delayed. For example, under STT, ReCon
untaints the output register of the load instruction that accesses an
address known to have leaked non-speculatively.

ReCon successfully reduces the overhead for NDA by 28.7%, and
31.5%, and the overhead for STT by 45.1%, and 39%, on average, for
the SPEC2017, and SPEC2006. For the PARSEC benchmark suite,
ReCon reduces the overhead incurred in the total execution time
by 78.6%, and 46.7%, respectively for NDA and STT.

ACKNOWLEDGMENTS

This work was supported by the VINNOVA grant 2021-02422, by
Microsoft Research through its EMEA PhD Scholarship Programme
grant 2021-020, the Swedish Research Council (VR) grant 2018-
05254, and the Swedish Foundation for Strategic Research (SSF)
grant FUS21-0067.

The simulations were performed by resources in project NAISS
2023/22-3 provided by the National Academic Infrastructure for
Supercomputing in Sweden (NAISS) at UPPMAX, funded by the
Swedish Research Council through grant agreement no. 2022-06725.

We thank the anonymous shepherd and reviewers for their valu-
able input.

REFERENCES

[1] Niket Agarwal, Tushar Krishna, Li-Shiuan Peh, and Niraj K. Jha. 2009. GARNET:
A detailed on-chip network model inside a full-system simulator. In Proceedings
of the International Symposium on Performance Analysis of Systems and Software.
33–42. https://doi.org/10.1109/ISPASS.2009.4919636

[2] Pavlos Aimoniotis, Amund Bergland Kvalsvik, Magnus Själander, and Stefanos
Kaxiras. 2022. Data-Out Instruction-In (DOIN!): Leveraging Inclusive Caches
to Attack Speculative Delay Schemes. In Proceedings of the IEEE International
Symposium on Secure and Private Execution Environment Design. 49–60. https:
//doi.org/10.1109/SEED55351.2022.00012

[3] Pavlos Aimoniotis, Christos Sakalis, Magnus Själander, and Stefanos Kaxiras.
2021. Reorder Buffer Contention: A Forward Speculative Interference Attack for
Speculation Invariant Instructions. IEEE Computer Architecture Letters 20 (July
2021), 162–165. Issue 2. https://doi.org/10.1109/LCA.2021.3123408

[4] Sam Ainsworth. 2021. GhostMinion: A Strictness-Ordered Cache System for
Spectre Mitigation. In Proceedings of the IEEE/ACM International Symposium on
Microarchitecture. 592–606. https://doi.org/10.1145/3466752.3480074

[5] Sam Ainsworth and Timothy M. Jones. 2020. MuonTrap: Preventing Cross-
Domain Spectre-Like Attacks by Capturing Speculative State. In Proceedings of
the International Symposium on Computer Architecture. 132–144. https://doi.org/
10.1109/ISCA45697.2020.00022

[6] A.R. Alameldeen and D.A. Wood. 2006. IPC Considered Harmful for Mul-
tiprocessor Workloads. IEEE Micro 26 (July 2006), 8–17. Issue 4. https:
//doi.org/10.1109/MM.2006.73

[7] AMD 2023. AMD Zen 3 Microarchitecture. https://en.wikichip.org/wiki/amd/
microarchitectures/zen_3

[8] AMD 2023. AMD Zen 4 Microarchitecture. https://en.wikichip.org/wiki/amd/
microarchitectures/zen_4

[9] Mohammad Behnia, Prateek Sahu, Riccardo Paccagnella, Jiyong Yu, Zirui Neil
Zhao, Xiang Zou, Thomas Unterluggauer, Josep Torrellas, Carlos Rozas, Adam
Morrison, Frank Mckeen, Fangfei Liu, Ron Gabor, Christopher W. Fletcher,
Abhishek Basak, and Alaa Alameldeen. 2021. Speculative interference at-
tacks: breaking invisible speculation schemes. In Proceedings of the Architec-
tural Support for Programming Languages and Operating Systems. 1046–1060.
https://doi.org/10.1145/3445814.3446708

[10] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessan-
dro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. 2019. SMoTherSpec-
tre: Exploiting Speculative Execution through Port Contention. In Proceedings of
the ACM SIGSAC Conference on Computer and Communications Security. 785–800.
https://doi.org/10.1145/3319535.3363194

[11] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC benchmark suite: characterization and architectural implications. In Pro-
ceedings of the International Conference on Parallel Architectural and Compilation
Techniques. 72–81. https://doi.org/10.1145/1454115.1454128

[12] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The gem5 simulator. ACM SIGARCH Computer
Architecture News 39 (May 2011), 1–7. Issue 2. https://doi.org/10.1145/2024716.
2024718

https://doi.org/10.1109/ISPASS.2009.4919636
https://doi.org/10.1109/SEED55351.2022.00012
https://doi.org/10.1109/SEED55351.2022.00012
https://doi.org/10.1109/LCA.2021.3123408
https://doi.org/10.1145/3466752.3480074
https://doi.org/10.1109/ISCA45697.2020.00022
https://doi.org/10.1109/ISCA45697.2020.00022
https://doi.org/10.1109/MM.2006.73
https://doi.org/10.1109/MM.2006.73
https://en.wikichip.org/wiki/amd/microarchitectures/zen_3
https://en.wikichip.org/wiki/amd/microarchitectures/zen_3
https://en.wikichip.org/wiki/amd/microarchitectures/zen_4
https://en.wikichip.org/wiki/amd/microarchitectures/zen_4
https://doi.org/10.1145/3445814.3446708
https://doi.org/10.1145/3319535.3363194
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Pavlos Aimoniotis, Amund Bergland Kvalsvik, Xiaoyue Chen, Magnus Själander, and Stefanos Kaxiras

[13] Xiaoyue Chen, Pavlos Aimoniotis, and Stefanos Kaxiras. 2023. Clueless: A Tool
Characterising Values Leaking as Addresses. arXiv preprint arXiv:2301.10618 (Jan.
2023). https://doi.org/10.48550/arXiv.2301.10618 arXiv:arXiv:2301.10618

[14] Rutvik Choudhary, Jiyong Yu, Christopher Fletcher, and Adam Morrison. 2021.
Speculative Privacy Tracking (SPT): Leaking Information From Speculative Exe-
cution Without Compromising Privacy. In Proceedings of the IEEE/ACM Interna-
tional Symposium on Microarchitecture. 607–622. https://doi.org/10.1145/3466752.
3480068

[15] G.Z. Chrysos and J.S. Emer. 1998. Memory dependence prediction using store
sets. In Proceedings of the International Symposium on Computer Architecture.
142–153. https://doi.org/10.1109/ISCA.1998.694770

[16] Standard Performance Evaluation Corporation. 2006. SPEC CPU2006 Benchmark
Suite. http://www.specbench.org/cpu2006/

[17] Standard Performance Evaluation Corporation. 2017. SPEC CPU2017 Benchmark
Suite. http://www.specbench.org/cpu2017/

[18] Stefan Gast, Jonas Juffinger, Martin Schwarzl, Gururaj Saileshwar, Andreas Kogler,
Simone Franza, Markus Köstl, and Daniel Gruss. 2023. SQUIP: Exploiting the
Scheduler Queue Contention Side Channel. In Proceedings of the IEEE Symposium
on Security and Privacy. 468–484.

[19] Nathan Gober, Gino Chacon, Lei Wang, Paul V. Gratz, Daniel A. Jimenez,
Elvira Teran, Seth Pugsley, and Jinchun Kim. 2022. The Championship
Simulator: Architectural Simulation for Education and Competition. arXiv
preprint arXiv:2210.14324 (Oct. 2022). https://doi.org/10.48550/arXiv.2210.14324
arXiv:arXiv:2210.14324

[20] Intel 2022. Guidelines for Mitigating Timing Side Channels Against Cryptographic
Implementations. https://www.intel.com/content/www/us/en/developer/
articles/technical/software-security-guidance/secure-coding/mitigate-timing-
side-channel-crypto-implementation.html

[21] Intel 2023. Intel Skylake Microarchitecture. https://en.wikichip.org/wiki/intel/
microarchitectures/skylake_(client)

[22] jannh@google.com. 2018. Issue 1528: speculative execution, variant 4: speculative
store bypass - project-zero. https://bugs.chromium.org/p/project-zero/issues/
detail?id=1528

[23] Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative Buffer Over-
flows: Attacks and Defenses. arXiv preprint arXiv:1807.03757 (July 2018).
arXiv:1807.03757 [cs] http://arxiv.org/abs/1807.03757

[24] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
Proceedings of the IEEE Symposium on Security and Privacy. 1–19. https://doi.org/
10.1109/SP.2019.00002

[25] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and
Nael Abu-Ghazaleh. 2018. Spectre Returns! Speculation Attacks using the Return
Stack Buffer. In Proceedings of the USENIX Workshop on Offensive Technologies.
https://www.usenix.org/conference/woot18/presentation/koruyeh

[26] Amund Bergland Kvalsvik, Pavlos Aimoniotis, Stefanos Kaxiras, and Magnus
Själander. 2023. Doppelganger Loads: A Safe, Complexity-Effective Optimization
for Secure Speculation Schemes. In Proceedings of the International Symposium
on Computer Architecture. 1–13. https://doi.org/10.1145/3579371.3589088

[27] Mengming Li, Chenlu Miao, Yilong Yang, and Kai Bu. 2022. unXpec: Breaking
Undo-based Safe Speculation. In Proceedings of the International Symposium High-
Performance Computer Architecture. 98–112. https://doi.org/10.1109/HPCA53966.
2022.00016

[28] Peinan Li, Lutan Zhao, Rui Hou, Lixin Zhang, and Dan Meng. 2019. Conditional
Speculation: An Effective Approach to Safeguard Out-of-Order Execution Against
Spectre Attacks. In Proceedings of the International Symposium High-Performance
Computer Architecture. 264–276. https://doi.org/10.1109/HPCA.2019.00043

[29] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In Proceedings of the USENIX Security Symposium.

[30] Giorgi Maisuradze and Christian Rossow. 2018. ret2spec: Speculative Execution
Using Return Stack Buffers. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security. 2109–2122. https://doi.org/10.1145/
3243734.3243761

[31] Andreas Ioannis Moshovos. 1998. Memory Dependence Prediction. Ph. D. Disser-
tation. University of Wisconsin.

[32] Joseph Ravichandran, Weon Taek Na, Jay Lang, and Mengjia Yan. 2022. PACMAN:
attacking ARM pointer authentication with speculative execution. In Proceedings
of the International Symposium on Computer Architecture. 685–698. https://doi.
org/10.1145/3470496.3527429

[33] Red Hat) 2022. Simultaneous Multithreading in Red Hat Enterprise Linux. https:
//access.redhat.com/solutions/rhel-smt

[34] Charles Reis, AlexanderMoshchuk, and Nasko Oskov. 2019. Site Isolation: Process
Separation for Web Sites within the Browser. In Proceedings of the IEEE Sympo-
sium on Security and Privacy. 1661–1678. https://www.usenix.org/conference/
usenixsecurity19/presentation/reis

[35] Xida Ren, Logan Moody, Mohammadkazem Taram, Matthew Jordan, Dean M
Tullsen, and Ashish Venkat. 2021. I See Dead µops: Leaking Secrets via Intel/AMD
Micro-Op Caches. In Proceedings of the International Symposium on Computer
Architecture. 14. https://doi.org/10.1109/ISCA52012.2021.00036

[36] Alberto Ros, Trevor E. Carlson, Mehdi Alipour, and Stefanos Kaxiras. 2017. Non-
Speculative Load-Load Reordering in TSO. In ACM SIGARCH Computer Architec-
ture News, Vol. 45. 187–200. https://doi.org/10.1145/3140659.3080220

[37] Gururaj Saileshwar and Moinuddin K. Qureshi. 2019. CleanupSpec: An "Undo"
Approach to Safe Speculation. In Proceedings of the IEEE/ACM International
Symposium on Microarchitecture. 73–86. https://doi.org/10.1145/3352460.3358314

[38] Christos Sakalis, Mehdi Alipour, Alberto Ros, Alexandra Jimborean, Stefanos
Kaxiras, and Magnus Själander. 2019. Ghost loads: What is the cost of invisible
speculation?. In Proceedings of the ACM International Conference on Computing
Frontiers. 153–163. https://doi.org/10.1145/3310273.3321558

[39] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean, and Mag-
nus Själander. 2019. Efficient Invisible Speculative Execution through Selective
Delay and Value Prediction. In Proceedings of the International Symposium on
Computer Architecture. 723–735. https://doi.org/10.1145/3307650.3322216

[40] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean, and Mag-
nus Själander. 2020. Understanding Selective Delay as a Method for Efficient
Secure Speculative Execution. IEEE Trans. Comput. 69 (Nov. 2020), 1584–1595.
Issue 11. https://doi.org/10.1109/TC.2020.3014456

[41] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and Daniel Gruss.
2019. NetSpectre: Read Arbitrary Memory over Network. In Proceedings of
the European Symposium on Research in Computer Security. 279–299. https:
//doi.org/10.1007/978-3-030-29959-0_14

[42] Martin Schwarzl, Pietro Borrello, Andreas Kogler, Kenton Varda, Thomas Schus-
ter, Michael Schwarz, and Daniel Gruss. 2022. Robust and Scalable Process
Isolation Against Spectre in the Cloud. In Proceedings of the European Symposium
on Research in Computer Security, Vijayalakshmi Atluri, Roberto Di Pietro, Chris-
tian D. Jensen, and Weizhi Meng (Eds.). 167–186. https://doi.org/10.1007/978-3-
031-17146-8_9

[43] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Mag-
nus O. Myreen. 2010. x86-TSO: a rigorous and usable programmer’s model
for x86 multiprocessors. Commun. ACM 53 (July 2010), 89–97. Issue 7. https:
//doi.org/10.1145/1785414.1785443

[44] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. 2002. Au-
tomatically characterizing large scale program behavior. In Proceedings of the
Architectural Support for Programming Languages and Operating Systems. 45–57.
https://doi.org/10.1145/605397.605403

[45] G Edward Suh, Jaewook Lee, and Srinivas Devadas. 2004. Secure Program
Execution via Dynamic Information Flow Tracking. ACM SIGPLAN Notices
39 (2004), 85–96. Issue 11.

[46] Mohammadkazem Taram, Xida Ren, Ashish Venkat, and Dean Tullsen. 2022.
SecSMT: Securing SMT Processors against Contention-Based Covert Channels.
In Proceedings of the USENIX Security Symposium. 3165–3182. https://www.
usenix.org/conference/usenixsecurity22/presentation/taram

[47] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. 2019. Context-
Sensitive Fencing: Securing Speculative Execution via Microcode Customization.
In Proceedings of the Architectural Support for Programming Languages and Oper-
ating Systems. 395–410. https://doi.org/10.1145/3297858.3304060

[48] Kim-Anh Tran, Christos Sakalis, Magnus Själander, Alberto Ros, Stefanos Kaxi-
ras, and Alexandra Jimborean. 2020. Clearing the Shadows: Recovering Lost
Performance for Invisible Speculative Execution through HW/SW Co-Design. In
Proceedings of the International Conference on Parallel Architectural and Compila-
tion Techniques. 241–254. https://doi.org/10.1145/3410463.3414640

[49] Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Mar-
garet Martonosi. 2017. TriCheck: Memory Model Verification at the Trisection
of Software, Hardware, and ISA. ACM SIGARCH Computer Architecture News 45
(March 2017), 119–133. Issue 1. https://doi.org/10.1145/3093337.3037719

[50] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. 1995. Simultaneous mul-
tithreading: maximizing on-chip parallelism. In Proceedings of the International
Symposium on Computer Architecture. 392–403. https://doi.org/10.1145/223982.
224449

[51] Jose Rodrigo Sanchez Vicarte, Michael Flanders, Riccardo Paccagnella, Grant
Garrett-Grossman, AdamMorrison, ChristopherW. Fletcher, and David Kohlbren-
ner. 2022. Augury: Using Data Memory-Dependent Prefetchers to Leak Data at
Rest. In Proceedings of the IEEE Symposium on Security and Privacy. 1491–1505.
https://doi.org/10.1109/SP46214.2022.9833570

[52] OfirWeisse, Ian Neal, Kevin Loughlin, Thomas F.Wenisch, and Baris Kasikci. 2019.
NDA: Preventing Speculative Execution Attacks at Their Source. In Proceedings
of the IEEE/ACM International Symposium on Microarchitecture. 572–586. https:
//doi.org/10.1145/3352460.3358306

[53] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher
Fletcher, and Josep Torrellas. 2018. InvisiSpec: Making Speculative Execution In-
visible in the Cache Hierarchy. In Proceedings of the IEEE/ACM International Sym-
posium on Microarchitecture. 428–441. https://doi.org/10.1109/MICRO.2018.00042

https://doi.org/10.48550/arXiv.2301.10618
https://arxiv.org/abs/arXiv:2301.10618
https://doi.org/10.1145/3466752.3480068
https://doi.org/10.1145/3466752.3480068
https://doi.org/10.1109/ISCA.1998.694770
http://www.specbench.org/cpu2006/
http://www.specbench.org/cpu2017/
https://doi.org/10.48550/arXiv.2210.14324
https://arxiv.org/abs/arXiv:2210.14324
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://arxiv.org/abs/1807.03757
http://arxiv.org/abs/1807.03757
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://doi.org/10.1145/3579371.3589088
https://doi.org/10.1109/HPCA53966.2022.00016
https://doi.org/10.1109/HPCA53966.2022.00016
https://doi.org/10.1109/HPCA.2019.00043
https://doi.org/10.1145/3243734.3243761
https://doi.org/10.1145/3243734.3243761
https://doi.org/10.1145/3470496.3527429
https://doi.org/10.1145/3470496.3527429
https://access.redhat.com/solutions/rhel-smt
https://access.redhat.com/solutions/rhel-smt
https://www.usenix.org/conference/usenixsecurity19/presentation/reis
https://www.usenix.org/conference/usenixsecurity19/presentation/reis
https://doi.org/10.1109/ISCA52012.2021.00036
https://doi.org/10.1145/3140659.3080220
https://doi.org/10.1145/3352460.3358314
https://doi.org/10.1145/3310273.3321558
https://doi.org/10.1145/3307650.3322216
https://doi.org/10.1109/TC.2020.3014456
https://doi.org/10.1007/978-3-030-29959-0_14
https://doi.org/10.1007/978-3-030-29959-0_14
https://doi.org/10.1007/978-3-031-17146-8_9
https://doi.org/10.1007/978-3-031-17146-8_9
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/605397.605403
https://www.usenix.org/conference/usenixsecurity22/presentation/taram
https://www.usenix.org/conference/usenixsecurity22/presentation/taram
https://doi.org/10.1145/3297858.3304060
https://doi.org/10.1145/3410463.3414640
https://doi.org/10.1145/3093337.3037719
https://doi.org/10.1145/223982.224449
https://doi.org/10.1145/223982.224449
https://doi.org/10.1109/SP46214.2022.9833570
https://doi.org/10.1145/3352460.3358306
https://doi.org/10.1145/3352460.3358306
https://doi.org/10.1109/MICRO.2018.00042

ReCon: Efficient Detection, Management, and Use of Non-Speculative Information Leakage MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

[54] Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, and Christopher W. Fletcher. 2018.
Data Oblivious ISA Extensions for Side Channel-Resistant and High Performance
Computing. Cryptology ePrint Archive (2018). https://eprint.iacr.org/2018/808

[55] Jiyong Yu, Namrata Mantri, Josep Torrellas, Adam Morrison, and Christopher W.
Fletcher. 2020. Speculative Data-Oblivious Execution: Mobilizing Safe Predic-
tion For Safe and Efficient Speculative Execution. In Proceedings of the Interna-
tional Symposium on Computer Architecture. 707–720. https://doi.org/10.1109/
ISCA45697.2020.00064

[56] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and
Christopher W. Fletcher. 2019. Speculative Taint Tracking (STT): A Comprehen-
sive Protection for Speculatively Accessed Data. In Proceedings of the IEEE/ACM

International Symposium on Microarchitecture. 954–968. https://doi.org/10.1145/
3352460.3358274

[57] Zirui Neil Zhao, Houxiang Ji, AdamMorrison, DarkoMarinov, and Josep Torrellas.
2022. Pinned loads: taming speculative loads in secure processors. In Proceedings
of the Architectural Support for Programming Languages and Operating Systems.
314–328. https://doi.org/10.1145/3503222.3507724

[58] Zirui Neil Zhao, Houxiang Ji, Mengjia Yan, Jiyong Yu, Christopher W. Fletcher,
AdamMorrison, DarkoMarinov, and Josep Torrellas. 2020. Speculation Invariance
(InvarSpec): Faster Safe Execution Through Program Analysis. In Proceedings of
the IEEE/ACM International Symposium on Microarchitecture. 1138–1152. https:
//doi.org/10.1109/MICRO50266.2020.00094

https://eprint.iacr.org/2018/808
https://doi.org/10.1109/ISCA45697.2020.00064
https://doi.org/10.1109/ISCA45697.2020.00064
https://doi.org/10.1145/3352460.3358274
https://doi.org/10.1145/3352460.3358274
https://doi.org/10.1145/3503222.3507724
https://doi.org/10.1109/MICRO50266.2020.00094
https://doi.org/10.1109/MICRO50266.2020.00094

	Abstract
	1 Introduction
	2 Background
	2.1 Non-speculative Data Access (NDA)
	2.2 Speculative Taint Tracking (STT)
	2.3 Speculative Privacy Tracking (SPT)

	3 Threat Model
	3.1 STT and NDA Integration
	3.2 Conditional Security Guarantee

	4 ReCon
	4.1 Overview
	4.2 What Non-Speculative Leakage to Capture?
	4.3 Direct Dependence Loads
	4.4 Concealing New Secrets
	4.5 Store-to-Load Forwarding

	5 Implementation
	5.1 Detecting Non-Speculative Load Pairs
	5.2 Tracking Revealed/Concealed Addresses
	5.3 ReCon Coherence
	5.4 Using Revealed Addresses

	6 Evaluation
	6.1 Methodology
	6.2 Leakage Breakdown
	6.3 Performance Results
	6.4 Leakage/Performance Correlation
	6.5 L1 and L2 bound ReCon
	6.6 Load-Pair Table Sensitivity Analysis
	6.7 Implementation Overhead

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

