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Abstract

The modified-Booth algorithm is extensively used for high-speed multiplier circuits. Once,
when array multipliers were used, the reduced number of generated partial products significantly
improved multiplier performance. In designs based on reduction trees with logarithmic logic
depth, however, the reduced number of partial products has a limited impact on overall perfor-
mance. The Baugh-Wooley algorithm is a different scheme for signed multiplication, but is not
so widely adopted because it may be complicated to deploy on irregular reduction trees. We use
the Baugh-Wooley algorithm in our High Performance Multiplier (HPM) tree, which combines a
regular layout with a logarithmic logic depth. We show for a range of operator bit-widths that,
when implemented in 130-nm and 65-nm process technologies, the Baugh-Wooley multipliers
exhibit comparable delay, less power dissipation and smaller area foot-print than modified-Booth
multipliers.

1 Introduction
Multiplication is an important arithmetic operation and multiplier implementations date several
decades back in time. Multiplications were originally performed by iteratively utilizing the ALU’s
adder. As timing constraints became stricter with increasing clock rates, dedicated multiplier hard-
ware implementations such as the array multiplier were introduced. Since then ever more sophisti-
cated methods on how to implement multiplications have been proposed. One of the more popular
implementations is that of the modified-Booth recoding scheme together with a logarithmic-depth
reduction tree and a fast final adder. Modified-Booth recoding has the advantage of reducing the
number of generated partial products by half, compared to partial-product generation based on 2-
input AND-gates. This fact decreases the size of the reduction circuitry, which commonly is a
logarithmic-depth reduction tree, e.g. Wallace, Dadda or TDM. Since such reduction trees are in-
famous for their irregular structures, which make them difficult to place and route during the phys-
ical layout of a multiplier, a decreased size of the reduction circuit eases the implementation and
improves the performance of the multiplier.

Modified-Booth implementation strategies are commonly motivated by the need for fast multi-
pliers. However, with the ongoing integration trend for which power dissipation is an ever pressing
concern, modified Booth is no longer the obvious implementation choice. Already in 1997 Call-
away et al. showed that, for a 2 µm process technology, a Wallace multiplier is more energy efficient
than a modified-Booth multiplier [1]. Even though power has become a bigger concern since then,
the modified-Booth multiplier is still prevailing as the main implementation choice for high-speed
multipliers.

In this paper we compare a multiplier based on the modified-Booth algorithm against one based
on the less used Baugh-Wooley algorithm. As will be shown in Sec. 8, a Baugh-Wooley multiplier
implemented in a 130-nm and 65-nm process technology is more power and energy efficient than
a modified-Booth multiplier of equal bit-width. This efficiency comes with only an insignificant
increase in delay. We will subsequently show that the high power dissipation makes modified Booth
a poor implementation choice for high-speed multipliers.
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2 Modified-Booth Multiplication
The original Booth algorithm [2] for the multiplication s = x×y recodes partial products by consid-
ering two bits at a time of one of the operands (x) and encoding them into {−2,−1,0,1,2}. Each
such encoded higher-radix number is subsequently multiplied with the second operand (y), yielding
one row of recoded partial-product bits. The advantage of Booth recoding is that the number of
recoded partial products is fewer than the number of un-recoded partial products, and this can be
translated into higher performance in the circuitry, which reduces all partial-product bits into the
final product.

The drawback of the original Booth algorithm is that the number of recoded partial products
depends on input operand x, which makes this algorithm unsuitable for implementation in hardware.
The modified-Booth (MB) algorithm [3] by MacSorley remedies this by looking at three bits at a
time of operand x. Then we are guaranteed that only half the number of partial products will be
generated, compared to a conventional partial-product generation using 2-input AND gates. Since it
has a fixed number of partial products, the MB algorithm is suitable for hardware implementation.

An MB multiplier works internally with a two’s complement representation of the partial prod-
ucts, in order to be able to multiply the encoded {−2,−1} with the y operand. To avoid having to
sign extend the partial products, we are using the scheme presented by Fadavi-Ardekani [4]. In the
two’s complement representation, a change of sign includes the insertion of a ’1’ at the least signif-
icant bit (LSB) position (henceforth called LSB insertion). To avoid an irregular implementation of
the partial-product reduction circuitry, we draw on the idea called modified partial-product array [5].
Here, the impact of LSB insertion on the two least significant bits positions of the partial product
is pre-computed. The pre-computation redefines the LSB of the partial product (Eq. 1 in [5]) and
moves the potential ’1’, which results from the LSB insertion, to the second least significant position
(Eq. 2). Note that our Eq. 2 is different from the corresponding equation used in [5]. Fig. 1 illustrates
an 8-bit MB multiplication using sign extension prevention and the modified partial-product array
scheme.

pLSBi = y0(x2i−1⊕ x2i) (1)

ai = x2i+1(x2i−1 + x2i + yLSB + x2i + yLSB + x2i−1) (2)
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Figure 1: Illustration of an 8-bit modified-Booth multiplication.

2.1 Modified-Booth Implementation
The implementation of the MB multiplier utilizes the regular reduction tree of the High Performance
Multiplier (HPM) [6]. In Fig. 2 the reduction tree of an 8-bit MB implementation is shown. The
long arrows with ’1”s and ai’s show the places where these signals, which are in the lower row of
the partial-product rhomboid in Fig. 1, have been inserted into the reduction tree. The figure does,
however, not show the MB recoding circuits.

The MB recoding logic can be designed in many different ways. For the subsequent comparison
we have chosen to implement two different, recent recoding schemes. The first recoding scheme is
the one presented by Yeh et al. [5], since this is claimed to be faster than many previous schemes.
The circuits for encoding and decoding using this scheme are shown in Fig. 3.

We have also chosen to implement the recoding scheme of Hsu et al. [7]. We chose to implement
this recoding scheme because it is a recent one, showing promising results. The encoding and
decoding circuits are shown in Fig. 4.

2



H

H

H

H

H

H

H

a0

a1

a2

a31

1

1

1

H

H Half Adder
Full Adder
Partial Product
Sum
Carry

0123456789101112131415

Figure 2: 8-bit modified-Booth multiplier using an HPM reduction tree. For simplicity, the modified-
Booth recoding logic is not shown. Furthermore, a simple ripple-carry adder is used as final adder.
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Figure 3: Modified-Booth recoding circuits according to Yeh et al..
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Figure 4: Modified-Booth recoding circuits according to Hsu et al..
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3 Baugh-Wooley Multiplication
The Baugh-Wooley (BW) algorithm [8] is a relatively straightforward way of doing signed multi-
plications; Fig. 5 illustrates the algorithm for an 8-bit case, where the partial-product bits have been
reorganized according to Hatamian’s scheme [9]. The creation of the reorganized partial-product
array comprises three steps: i) The most significant bit (MSB) of the first N−1 partial-product rows
and all bits of the last partial-product row, except its MSB, are inverted. ii) A ’1’ is added to the Nth
column. iii) The MSB of the final result is inverted.
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Figure 5: Illustration of an 8-bit Baugh-Wooley multiplication.

3.1 Baugh-Wooley Implementation
To the best of our knowledge, performance investigations in the open literature concerning BW
implementations have exclusively been based on reduction arrays, in the spirit of the original pa-
per [8]. In this investigation, however, we have chosen to implement the BW algorithm on the HPM
reduction tree [6] instead.

Implementing the BW multiplier based on the HPM tree is as straightforward as the basic algo-
rithm itself. The partial-product bits can be generated by using a 2-input AND gate for each pair of
operand bits. In the case a partial-product bit should be inverted, we employ a 2-input NAND gate
instead. The insertion of ’1’ in column N is easily accommodated by changing the half adder at top
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Figure 6: 8-bit Baugh-Wooley multiplier using an HPM reduction tree. For simplicity, the
AND/NAND gates for partial-product generation are not shown. Furthermore, a simple ripple-carry
adder is used as final adder.
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of row N to a full adder with one of the input signals connected to ’1’1. Finally, the inversion of the
MSB of the result is done by adding an inverter. The final result of the implementation of the BW
algorithm is depicted in Fig. 6.

4 An Initial Gate-Level Study
A widespread belief is that the number of rows of partial-products bits has large impact on the
total time to carry out a multiplication. For sequential multipliers, where for each cycle one of the
operands is added to a partial result, the number of partial products to be added is indeed critical.
Here, the reduction in rows resulting from Booth encoding has a direct and significant effect on the
cycle count for a complete multiplication.

At the time when the modified-Booth (MB) and Baugh-Wooley (BW) algorithms were intro-
duced (in 1961 and 1973, respectively) hardware multipliers were at best built as an array of full
adders. In an array multiplier, each row of partial-product bits adds one full adder to the logic depth
of the multiplier2; in this context the reduction in partial-product rows resulting from MB has great
effect on timing.

However, in dedicated high-performance multipliers that are built around a reduction tree, the
number of rows becomes less critical, because of the logarithmic nature of the gate structure of the
tree. With today’s logarithmic-depth reduction trees, such as TDM, Wallace, Dadda, and HPM, the
logic depth increases with the logarithm of the maximum number of adders in a column. The logic
depth for the HPM is shown in Table 1. The logic depth is here defined as the maximum number
of adders that have to be traversed to reach the final adder in an HPM tree built out of 3:2 adders
(full adders). To be able to evaluate the logic depth of the reduction tree for BW and MB, the logic
depth is given for the maximum number of adders in a column, instead of for the operand width of
the multiplier.

Table 1: Logic depth through the HPM tree, with respect to the maximum number of adders in a
column.

Maximum number Logic depth
of adders (A)

A = 1 1
A = 2 2

3≤ A≤ 4 3
5≤ A≤ 7 4
8≤ A≤ 11 5

12≤ A≤ 17 6
18≤ A≤ 26 7
27≤ A≤ 40 8
41≤ A≤ 61 9
62≤ A≤ 92 10

The maximum number of adders in a column of the HPM reduction tree, for a certain operand
width of BW and MB, can be obtained through the simple relation in Table 2.

Table 2: Maximum number of adders in a column of the HPM tree based on the partial-product
generation according to Baugh-Wooley and modified Booth.

Operand width Maximum number of adders
Baugh-Wooley Modified Booth

N N−2 N/2−1

1The full-adder circuit can consequently be simplified, since one of its input signals is statically defined.
2With the exception of the first two rows of partial products, which only result in one row of full adders.
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By combining the information on the logic depth through the HPM reduction tree, Table 1, and
the relation between the maximum number of adders and the operand width, Table 2, we can obtain
the logic depth for different operand widths of the BW and MB implementations. The results are
given in Table 3.

Table 3: Logic depth through the HPM reduction tree based on the partial-product generation ac-
cording to Baugh-Wooley and modified Booth.

Operand width Logic depth Difference in
Baugh-Wooley Modified Booth logic depth

8 4 3 1
16 6 4 2
32 8 6 2
40 8 7 1
48 9 7 2
54 9 7 2
60 9 8 1
64 10 8 2

As Table 3 shows, the logic depth of the reduction tree designed for modified Booth is at best
two full-adder delays shorter than that designed for Baugh-Wooley, for operand widths up to at least
64 bits. The shorter logic depth through the MB reduction tree comes at the cost of a partial-product
generation circuit that is more complex than that of BW, whose partial-product generation circuit
utilizes only a simple 2-input AND-gate for each generated partial-product bit.

The conclusion of this initial gate-level study is that it is certainly not obvious that the deploy-
ment of the modified-Booth algorithm onto a fast reduction tree yields a faster implementation than
a corresponding Baugh-Wooley implementation.

5 Multiplier Evaluation Setup
To evaluate the different multiplier designs a multiplier generator [10] was created. This generator
is capable of generating gate-level VHDL netlist descriptions of modified-Booth (MB) and Baugh-
Wooley (BW) multipliers of various operand sizes, according to the schemes presented in the previ-
ous sections. Both the MB recoding scheme of Yeh et al. and Hsu et al. have been implemented. All
netlists are based on the regular reduction tree of a High Performance Multiplier (HPM) [6], based
on 3:2 adder (full adder) cells. A Kogge-Stone [11] adder is used as the final adder, placed on the
reduction tree outputs.

By exhaustively simulating all input patterns and verifying the result using Cadence NC-VHDL
[12], the VHDL generator was verified to generate functionally correct multiplier netlists of sizes up
to at least 16 bits. For multipliers larger than 16 bits, the functionality of each multiplier size was
verified for a random pattern of one million vectors.

The VHDL descriptions were synthesized using Synopsys Design Compiler [13] together with a
commercially available 1.2 V 130-nm process technology. The synthesized netlist was taken through
place and route using Cadence Encounter [14]. To create a common input and output interface to
the multipliers and to enable higher place and route quality from the EDA tools, which do not
handle purely combinatorial circuits well, registers were placed on the inputs and outputs of the
multipliers. Delay estimates were obtained after RC extraction from the placed and routed netlists.
Power estimates were derived from the same netlists, using value change dump (VCD) data from
simulations of 10,000 random input vectors. All delay, power, and area figures that we present,
include the input and output registers on the multipliers and are for the worst case corner at 1.08V.

Initially, the timing constraints were systematically set so as to push the limits of the timing
that can be achieved for each generated VHDL description. This guarantees that a very fast imple-
mentation is obtained, however, the power dissipation becomes prohibitively high, due to excessive
buffering and resizing of gates. Therefore, for each implementation, the timing was subsequently
relaxed with 100, 300, and 600 ps, respectively, relative to the fastest timing obtained. Correspond-
ingly, power estimates were obtained for each timing constraint.
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6 Modified-Booth Multiplier Evaluation
Before we can compare a modified-Booth (MB) multiplier with a Baugh-Wooley (BW) multiplier,
we first have to ascertain which of the previous two MB recoding schemes is best. The first scheme
was that of Yeh et al. [5], as shown in Fig. 3, while the second scheme was that of Hsu et al. [7], as
shown in Fig. 4. The original circuit of Hsu uses transmission gates in the decoding circuit. However,
with the cell library used for this evaluation we are limited to tristated inverters, which may hamper
the efficiency of this scheme.

6.1 Yeh Recoding
If we consider the fanout for the recoding circuits of the MB multiplier using the Yeh recoding
scheme, we notice that each decoder needs to drive N decoders, for a multiplier of size N. To find
a trade off between the fanout of the x-inputs that drive the encoders and the fanout of the encoder
output signals, we instantiate more than one encoder for the N decoders associated with one partial-
product bit row. To reduce the load of the x-inputs, we use minimum-size inverters to buffer all three
inputs of the encode circuit, as shown in Fig. 7.
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x2i-1

Neg

Z

X1

X2

Figure 7: Buffered encode circuit for fanout reduction.

To find a good trade off between the fanout of the x-inputs and the outputs of the encoding circuit,
we varied the maximum number of decode circuits that are connected to a single encode circuit. The
netlists of 32- and 64-bit multipliers with a maximum of 12, 16, or 20 decoders per encoder, were
taken through synthesis, placement, and route. The delay and energy-per-operation can be found in
Table 4. As can be seen from the table, the minimum delay that can be achieved differs only with 30
ps (less than 1%) for the 64-bit case. However, the difference in energy-per-operation is more than
4 pJ (3%). Taking energy into consideration, a maximum fanout of 16 decoders per encoder appears
to offer a good trade off between delay and energy.

Table 4: Delay and energy dependency on fanout for the MB multiplier using a Yeh recoder.
Maximum Number of Decoders per Encoder

Width 12 16 20
16 2.82 (ns) 9.24 (pJ) 2.79 (ns) 9.04 (pJ) 2.79 (ns) 9.04 (pJ)
32 3.69 (ns) 32.5 (pJ) 3.68 (ns) 32.6 (pJ) 3.65 (ns) 31.1 (pJ)
64 4.51 (ns) 135 (pJ) 4.52 (ns) 133 (pJ) 4.54 (ns) 137 (pJ)

6.2 Hsu Recoding
When we conduct the fanout investigation for the Hsu recoding scheme, we discover that the fanout
for the x-inputs is reduced by adding minimum-sized inverters to all inputs of the encode circuits.
The encode circuit is changed accordingly so that the logical function is preserved. To reduce the
fanout of the encode circuits, the maximum number of decoders connected to a single encoder is
limited, and to reduce the fanout of the y-inputs, we insert a number of inverters in parallel to buffer
each input, so that each inverter drives a limited number of decoders.
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The netlists of 32- and 64-bit multipliers with various fanout configurations, were taken through
synthesis, placement, and route. The result for the 32-bit and the 64-bit multiplier implementations
is given in Table 5 and Table 6, respectively. The choice of fanout configuration is not as straightfor-
ward as for the Yeh recoding scheme. For the 32-bit implementations we see that the configuration
with 12 decoders per encoder and 10 decoders per inverter for the y-input yields the fastest imple-
mentation. However, this recoding configuration dissipates 9% more energy-per-operation than the
implementation with the lowest energy-per-operation. Now, since the configuration with the lowest
energy-per-operation also happens to be the second fastest, this is the most efficient configuration of
all. When we consider also the 64-bit implementations, it is confirmed that 16 decoders per encoder
and 10 decoders per inverter for the y-input is a good choice for configuration.

Table 5: Delay and energy dependency on fanout for 32-bit modified-Booth multipliers using a Hsu
recoder. A row shows the maximum number of decoders per inverter for the y-inputs.

Maximum Number of Decoders per Encoder
12 16 20

6 3.80 (ns) 39.1 (pJ) 3.84 (ns) 38.9 (pJ) 3.83 (ns) 39.3 (pJ)
10 3.84 (ns) 39.8 (pJ) 3.79 (ns) 37.1 (pJ) 3.95 (ns) 38.9 (pJ)
14 3.70 (ns) 40.4 (pJ) 3.80 (ns) 38.5 (pJ) 3.83 (ns) 38.9 (pJ)

Table 6: Delay and energy dependency on fanout for 64-bit modified-Booth multipliers using a Hsu
recoder. A row shows the maximum number of decoders per inverter for the y-inputs.

Maximum Number of Decoders per Encoder
12 16 20

6 4.84 (ns) 166 (pJ) 4.94 (ns) 156 (pJ) 4.83 (ns) 152 (pJ)
10 4.79 (ns) 166 (pJ) 4.80 (ns) 153 (pJ) 5.21 (ns) 158 (pJ)
14 4.70 (ns) 175 (pJ) 4.92 (ns) 163 (pJ) 4.85 (ns) 168 (pJ)

6.3 Recoding Scheme Comparison
Already from the results of Tables 4, 5, and 6 it is clear that the Yeh recoding scheme outperforms
the recoding scheme of Hsu. This is confirmed by Fig. 8 that shows the delay and power for 16-,
32-, 48-, and 64-bit multipliers with the two different recoding schemes. Fig. 8 shows the power
dissipation for different delay constraints. The leftmost point for each graph in the figure depicts the
shortest possible delay that is achieved using our evaluation setup. The second, third and fourth point
is when the timing constraint is relaxed with 100 ps, 300 ps, and 600 ps, respectively, relative the
shortest possible delay. From the figure it is clear that the Yeh recoding scheme is the best scheme
both in terms of delay and power.

We believe that the Hsu recoding scheme somewhat suffers from the fact that our investigation
is based on tristated inverters, rather than transmission gates. At the same time we doubt that the
improvement gained from using transmission-gate cells would be so significant that the Hsu recoding
scheme would outperform the Yeh scheme.
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Figure 8: Delay and power for modified-Booth multipliers of various sizes, using two different
recoding schemes.

7 Baugh-Wooley Multiplier Evaluation
The partial-product generation in the Baugh-Wooley (BW) implementation is much simpler than the
one used in the modified-Booth multipliers. This difference in complexity becomes apparent also
when we deal with fanout. In the BW multiplier each input drives N 2-input AND-gates for an N-bit
multiplier. The effort to drive the AND-gates can simply be shared between a number of inverters
that connect to the multiplier primary inputs. Table 7 shows the result of varying the maximum
number of AND-gates connected to an inverter from 6 to 14 gates. The table shows that connecting
10 AND-gates to each inverter yields both a fast and energy-efficient solution.

Table 7: Delay (ns) and energy (pJ) dependency on fanout for the Baugh-Wooley multiplier.
Maximum Number of Decoders per Inverter

Width 6 10 14
16 2.91 (ns) 6.47 (pJ) 2.94 (ns) 6.27 (pJ) 2.94 (ns) 6.07 (pJ)
32 3.75 (ns) 24.5 (pJ) 3.63 (ns) 25.1 (pJ) 3.64 (ns) 23.7 (pJ)
64 4.65 (ns) 95.1 (pJ) 4.53 (ns) 95.4 (pJ) 4.68 (ns) 94.5 (pJ)

8 Comparison of Baugh-Wooley and Modified-Booth
Multipliers

We begin the multiplier comparison of Baugh-Wooley (BW) and modified-Booth (MB), using the
Yeh recoding scheme, by considering their efficiency in terms of delay and power3. Fig. 9 shows the
delay and power for 16-, 32-, 48-, and 64-bit multipliers, using i) a timing constraint that achieves the
fastest implementation and ii) three different relaxed timing constraints: 100 ps, 300 ps, and 600 ps,
respectively, slower than the fastest timing obtained. The figure shows that the MB implementation
can be up to 150 ps faster than the BW implementation. However, for 32 bits the BW implementation
outperforms that of the MB. In contrast to the timing, the power dissipation is consistently and
significantly lower for the BW implementations. The power dissipation of the MB implementations
is 25–40% higher than that of a BW multiplier of the same size, which operates at the same speed.

3The power is given for a frequency that corresponds to the inverse of the delay.
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Figure 9: Delay and corresponding power dissipation for 16-, 32-, 48-, and 64-bit instances of
modified-Booth and Baugh-Wooley multipliers.

A useful metric when considering both delay and power is the energy that is required to complete
a single multiplication operation. Since we are now dealing with single-cycle multipliers, the energy-
per-operation is obtained as the product of power and delay for each point in the graph of Fig. 9.
Fig. 10 shows the result of such a calculation for sizes from 8 to 64 bits: Among the four timing
constraints, only the smallest energy-per-operation obtained for each size is plotted. The lowest
energy-per-operation is commonly achieved at a timing that is 100 ps to 300 ps slower than the fastest
possible. From the graph it is clear that the BW multiplier is a much more efficient implementation
in terms of energy.
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Figure 10: Energy-per-operation for modified-Booth and Baugh-Wooley multipliers.
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For some embedded systems, speed can be as crucial as power dissipation. To compare the
shortest delay that can be achieved, Fig. 11 shows the result for sizes of 8 to 64 bits. The graph
shows that the BW multiplier can match the performance of the MB multiplier for sizes of up to 44
bits and even for larger multipliers the difference is no more than 150 ps, i.e. less than 4%.
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Figure 11: The shortest delay for modified-Booth and Baugh-Wooley multipliers.

If we consider area, which is an important factor for efficient multiplier implementations, the BW
multiplier also in this respect outperforms the MB multiplier. Fig. 12 shows the area of the different
multiplier implementations and for all sizes the BW implementation consistently is the smallest. The
BW implementation is about 20% smaller than that of a MB implementation of the same operand
bit-width.
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Figure 12: The area (µm2) for modified-Booth and Baugh-Wooley multipliers.
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8.1 Dissecting the Timing
When we take a closer look at the timing contribution of i) the partial-product generation, ii) the
reduction tree, and iii) the final adder to the total delay for MB and BW multipliers, we see that the
delay that is gained by having a smaller reduction tree for the MB implementation is offset by the
delay of the MB recoding circuitry. Tables 8 and 9 show that the partial-product generation of the
MB multipliers are about two times as slow as that of generation in the BW multipliers. This comes
as no surprise, since for BW there is only one 2-input AND-gate in the critical path, while for the
MB multiplier the critical path goes through the encoder followed by the decoder. Taking fanout into
consideration, the primary inputs of a BW multiplier need to drive only N minimum-sized 2-input
AND-gates, while for the MB multiplier the x primary inputs first have to drive N/2 encoders, which
in turn drive N decoders.

Table 8: The delay for the partial-product generation, the reduction tree, and the final adder for two
32-bit multipliers.

Baugh-Wooley Modified Booth
Increment Total Increment Total

Partial Product 0.459 (ns) 0.459 (ns) 0.953 (ns) 0.953 (ns)
Reduction Tree 2.092 (ns) 2.551 (ns) 1.679 (ns) 2.632 (ns)

Final Adder 1.081 (ns) 3.632 (ns) 1.052 (ns) 3.684 (ns)

Table 9: The delay for the partial-product generation, the reduction tree, and the final adder for two
48-bit multipliers.

Baugh-Wooley Modified Booth
Increment Total Increment Total

Partial Product 0.592 (ns) 0.592 (ns) 1.101 (ns) 1.101 (ns)
Reduction Tree 2.439 (ns) 3.031 (ns) 1.770 (ns) 2.871 (ns)

Final Adder 1.219 (ns) 4.250 (ns) 1.265 (ns) 4.136 (ns)

9 Implementation Aspects of the Reduction Tree
The synthesis of the reduction trees used for the results in the previous sections was limited to
minimum-sized full-adder (3:2) cells. It would be possible to achieve higher speed by increasing
the drive strength of the reduction tree’s gates or by using larger (4:2, 7:3, or 9:2) counter cells.
This would mainly favor the Baugh-Wooley (BW) implementation since this, in comparison to the
modified-Booth (MB) implementation, has a larger critical-path portion inside the reduction circuit.
A faster reduction tree circuit, thus, would have a proportionally larger impact on the total delay of
the BW implementation. On the other hand, an increased drive strength of the reduction tree’s gates
would have a negative impact on the power dissipation. In this respect, a BW implementation would
experience a relatively higher increase in power compared to an MB implementation. How the power
would be affected by larger counters is more difficult to predict without knowing the power of the
counter cell. If one counter cell would be less power hungry than the collection of full-adder cells
that it replaces, the BW implementation would benefit from using counters.

By varying the full-adder cell drive strength in the reduction circuit, we found that even for the
drive strength4 that yields the highest speed, a BW implementation is still 20-30% more energy
efficient than the MB implementation; the exact value of the gain depends on the operand bit-width
of the multiplier. Fig.13 shows the delay and power for the full-adder drive strength that obtained
the best timing. In a comparison with Fig. 9, we see that the delay is improved at a cost in power.

4The full-adder cell comes in five different drive strengths in our cell library.
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Figure 13: Delay and power for a 16-, 32-, 48- and 64-bit Baugh-Wooley and modified-Booth mul-
tipliers, for the drive strength of the full-adder cells in the reduction tree that obtains the lowest
delay.

10 Implementation in a 65-nm Process Technology
We had limited access to a commercial 65-nm low-power process technology and used it to imple-
ment a 32-bit Baugh-Wooley (BW) and modified-Booth (MB) multiplier with standard threshold
voltage cells. For the 65-nm design flow, Cadence Encounter [15] is used for synthesis, placement,
and routing. For this process technology we were not able to do the same fanout investigations
and buffer insertion, as described for the 130-nm process. The synthesis was restricted to use only
full-adder cells. However, the placement tool is capable of doing re-synthesis and has in some cases
implemented the full-adder functionality as a set of logic cells. Timing and power estimates are for
the worst-case 125-degrees corner at 1.1 V. The timing is for lowest delay possible and the power dis-
sipation was estimated using value change dump (VCD) data from simulations with 10,000 random
input vectors, as for the 130-nm process.

Table 10: Delay, power, energy, and area for 32-bit Baugh-Wooley and modified-Booth multipliers
in a 65-nm process.

Delay (ns) Power (mW) Energy (pJ) Area (µm2)
Baugh 2.59 (100%) 23.4 (100%) 60.6 (100%) 48.1k (100%)
Booth 2.50 ( 97%) 37.5 (160%) 93.8 (155%) 52.1k (108%)

Table 11: Delay, power, energy, and area for 32-bit Baugh-Wooley and modified-Booth multipliers
in a 130-nm process.

Delay (ns) Power (mW) Energy (pJ) Area (µm2)
Baugh 3.63 (100%) 7.81 (100%) 28.4 (100%) 88.8k (100%)
Booth 3.68 (101%) 9.74 (125%) 35.8 (126%) 108.9k (123%)

The results for 32-bit BW and MB multipliers in the 65-nm process are shown in Table 10.
The high power and energy dissipation of the MB multiplier does not justify the small performance
advantage; 90 ps (3%) faster than the BW multiplier. Furthermore, the MB multiplier is also 8%
larger in terms of area.
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For reference, the corresponding data (those for shortest delay) for the 32-bit 130-nm implemen-
tations is shown in Table 11. The relationship between the BW and MB multiplier does not change
much in terms of shortest delay. However, in relation to BW, the power and energy for the MB
multiplier increase significantly with process scaling. Regarding area, the area penalty for the MB
implementation is reduced from 23% in 130-nm to 8% in 65-nm.

Considering the results for the 65-nm and 130-nm it is clear that at least for a 32-bit multiplier, a
MB implementation has higher power dissipation, larger area and only a negligible delay improve-
ment compared to a BW implementation.

11 Partial-Product Generation and Final Adders
The usage of the modified-Booth (MB) algorithm makes the reduction tree flatter. This has the effect
that the timing profile of the remaining pair of partial products, which are to be summed up by the
final adder, are also flatter than compared to a Baugh-Wooley (BW) multiplier. There have been
extensive research [16, 17] in adapting the final adder to the timing profile of the partial-product
pair from the reduction tree in order to reduce power as well as area. As the timing profile becomes
flatter, the room for exploiting timing slacks becomes more limited: A faster final adder is required
for the less significant portion of the final result.

For the investigations conducted in this paper, a fast Kogge-Stone adder has been used as final
adder. However, the final adder could have been optimized for each specific implementation. In
this context, the BW implementations would have gained, in terms of power and area, more from an
optimization of the final adder than the MB implementations.

12 Conclusion
The modified-Booth algorithm, which is commonly used today, makes multiplier design complex
and a significant design effort is needed to obtain an efficient implementation. The design decision
of using the modified-Booth algorithm is most likely based on the notion that a smaller reduction
circuitry achieves a better implementation. This was once true, but the introduction of logarithmic-
depth reduction trees, and particularly the regular structure of the HPM reduction tree, has made
the size of the reduction circuit less of a concern when designing a multiplier. The logic depth
through the HPM reduction tree differs by only one or two full adders for a modified-Booth and
Baugh-Wooley implementation of the same operand bit-width. Considering that the critical path of a
modified-Booth multiplier is located in its encoder and decoder, it is difficult to envision a modified-
Booth implementation that can be much faster than a Baugh-Wooley implementation, regardless
of the recoding scheme used. Taking power, energy per operation, and area into consideration, it
is clear that the gain by reducing the reduction circuitry is lost in the recoding circuitry, making a
modified-Booth implementation perform worse than a Baugh-Wooley implementation.
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