PIP: Making Andersen’s Points-to Analysis Sound
and Practical for Incomplete C Programs

Havard Rognebakke Krogstie

Norwegian University of Science and Technology

Trondheim, Norway
havard.r.krogstie@ntnu.no

Magnus Sjdlander

Norwegian University of Science and Technology

Trondheim, Norway
magnus.sjalander @ntnu.no

Abstract—Compiling files individually lends itself well to
parallelization, but forces the compiler to operate on incomplete
programs. State-of-the-art points-to analyses guarantee sound
solutions only for complete programs, requiring summary func-
tions to describe any missing program parts. Summary functions
are rarely available in production compilers, however, where
soundness and efficiency are non-negotiable. This paper presents
an Andersen-style points-to analysis that efficiently produces sound
solutions for incomplete C programs. The analysis accomplishes
soundness by tracking memory locations and pointers that are
accessible from external modules, and efficiency by performing
this tracking implicitly in the constraint graph. We show that
implicit pointee tracking makes the constraint solver 15x faster
than any combination of five different state-of-the-art techniques
using explicit pointee tracking. We also present the Prefer Implicit
Pointees (PIP) technique that further reduces the use of explicit
pointees. PIP gives an additional speedup of 1.9x, compared
to the fastest solver configuration not benefiting from PIP. The
precision of the analysis is evaluated in terms of an alias-analysis
client, where it reduces the number of MayAlias-responses by
40% compared to LLVM’s BasicAA pass alone. Finally, we show
that the analysis is scalable in terms of memory, making it suitable
for optimizing compilers in practice.

Index Terms—Static analysis, points-to analysis, partial analysis.

I. INTRODUCTION

Alias information is a prerequisite for program analyses
and transformations that are essential in optimizing compilers,
program verification, and program comprehension tools. Im-
portant compiler transformations, such as loop invariant code
motion, dead load and store elimination [1], loop versioning [2],
vectorization [3], etc., rely on alias information to be effective.
A points-to analysis provides sets of possible targets for
pointers, and can form the basis for an alias analysis, in
addition to other analyses like call graph and mod/ref summary
creation [4]. Ideally, a points-to analysis should efficiently
provide precise information, but a balance must be found
in practice, as precise points-to analysis is undecidable [5].
Practical and scalable implementations therefore approximate
the exact solution, and a plethora of trade-offs between
precision and performance exist [4, 6—12].

979-8-3315-9288-2/26 © 2026 IEEE

Helge Bahmann
Independent Researcher
Ziirich, Switzerland
hcb@chaoticmind.net

Nico Reissmann
Independent Researcher
Trondheim, Norway
nico.reissmann @ gmail.com

1 static int x, y;

2 int z;

3 extern intx getPtr();
4 ints p = &x;

5

6 void callMe(intx q) {
7 int w;

8 ints r = getPtr();
9 if (r == NULL)

10 r = &w;

11}

Fig. 1. Example of an incomplete program with pointers p, g, and r, all of

which may point to unknown targets from external modules.

These trade-offs receive a lot of attention in the literature,
where their scalability is shown by performing whole-program
analysis. However, even if all optimizations are deferred to
link time, which is the exception rather than the norm, very
few programs outside the domain of embedded systems are
complete. On the contrary, the majority of programs are
incomplete, i.e., programs with unknown external functions, as
they depend on external libraries and/or system calls [4, 13].

The problem is illustrated in Figure 1. In this incomplete
program, the pointers g and r originate from outside the current
module, making it impossible for an analysis to determine the
origins of the pointer values. Nevertheless, it is possible to infer
some facts about their targets. Our analysis correctly infers
that p, g and r may target x, z, or any memory object defined
in external modules, but never y. Only r may target w.

In contrast, other analyses require the presence of summary
functions to render the program in Figure 1 complete [14-16],
or otherwise produce an unsound solution [6, 17, 18]. While
unsound analyses might be acceptable for some tools or clients,
such as in bug detection or refactoring assistance, optimizing
compilers can not tolerate unsoundness [19]. Summary func-
tions are not always available, such as when using external
libraries, and can at most be an optional tool for improving
the precision of common library functions.

535

Accepted for publication by IEEE. © 2026 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/ republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

https://dl.acm.org/doi/10.5281/zenodo.16900791

In this paper, we present an Andersen-style points-to anal-
ysis [20] that produces sound solutions for all well-formed
incomplete C programs adhering to the standard provenance-
aware memory model [21]. Our key insight is that a sound
solution can be accomplished by tracking which memory
locations and pointers are accessible to external modules.
Pointers with external origins may only target these externally
accessible memory locations, avoiding the need for an overly
conservative “Unknown”-flag seen in other analyses [4, 20].
Importantly, a pointer value of unknown origin may not
target any memory locations from the current module that
have not escaped. Our efficient implementation relies on six
new constraint types, which enable us to implicitly represent
externally accessible memory locations in the constraint graph,
significantly reducing solver runtime. We also present the Prefer
Implicit Pointees (PIP) technique that further reduces the use of
explicit pointees by detecting situations where explicit pointees
do not affect the final solution.

The results from running our analysis on a set of 3659
C files from nine SPEC CPU2017 [22] benchmarks and four
open-source programs show that the implicit representation
of pointees is the most important factor for efficient solving.
We achieve a total speedup of 15x over an oracle that always
chooses the fastest configuration with explicit representation.
Enabling PIP in addition to representing pointees implicitly
gives an additional 1.9x speedup. The evaluation includes five
additional solver techniques from the literature [14, 16, 23].
In the context of individual file analysis, none of them
improve upon PIP on average. Finally, the precision of the
analysis results is evaluated in terms of an alias-analysis
client. Compared to using a local IR-traversing alias analysis,
LLVM’s BasicAA, incorporating information from the points-
to graph reduces the number of MayAlias-responses by 40%
on average. The results show that our sound points-to analysis
can provide additional alias information at scale, making it
practical for production compilers.

II. BACKGROUND

A points-to analysis takes all pointers and memory objects in
a program, and produces a points-to set Sol(p) for each pointer
p. The solution is sound if Sol(p) contains all memory objects
p may ever target at runtime in all possible executions of the
program. Sol(p) may also contain spurious memory objects

that p never targets, which make the solution less precise [24].

An efficient analysis typically requires trading precision for
scalability, and multiple trade-offs exist. A flow-insensitive
analysis ignores control flow, and treats the program as an
unordered set of statements [14]. A context-insensitive analysis
unifies arguments and return values between all calls to a
function [13]. A field-insensitive analysis represents all fields

of an aggregate memory object using a single points-to set [25].

Points-to analyses can typically be categorized as either
unification-based or inclusion-based [13], where the latter
models the flow of points-to sets directionally, giving more

TABLE I
CONSTRAINT TYPES IN AN ANDERSEN-STYLE CONSTRAINT LANGUAGE,
AND EXAMPLES OF C STATEMENTS THEY REPRESENT.

Name Constraint Corresponding C code
Base p 2 {a} p = &a;

Simple p24q p = q;

Load P 2 *q p = xq;

Store *p D q *p = q;

Function Func(f,r, a1, ..., an) ‘{[Old* f(ai, ..., an)

..; return r; }
Call(f,r, a1, ...

Function call ,an) r = (xf)(ar, ..., an)

precise solutions. Analyses that are inclusion-based and flow-
insensitive are commonly referred to as Andersen-style [13],
and are the topic of this paper. We consider a field- and context-
insensitive implementation.

A. Building Constraint Sets

In the first phase of an Andersen-style analysis, the program
is converted into a finite set of abstract memory locations
M, pointers P, and constraints C. The constraints model all
possible ways in which pointers may be given pointees, such as
taking the address of memory objects, copying pointer values,
loading and storing pointers, and passing pointers into and out
of function calls. We define a constraint language to represent
these constraints, shown in Table 1. The first four constraints
are identical to the ones used by Pearce [14]. Function calls are
handled similarly to Foster’s lam construct [26], and support
indirect function calls.

The exact process of converting the source program into
constraints depends on the program representation. Modern
intermediate representations, like LLVM IR, make a distinction
between variables stored in memory and temporary values
stored in virtual registers [27]. Registers can not be pointed
to, so the analysis only needs to consider them if their type is
pointer compatible. Types that are not pointer compatible do
not have points-to sets, and can be ignored by the analysis [4].
In this work, we consider a type to be pointer-compatible if it
is a pointer or an aggregate type containing a pointer. The set
of pointers P includes all pointer-compatible virtual registers.

During runtime, the program may allocate arbitrarily many
memory objects, which must be represented by a finite set of
abstract memory locations M. Named memory objects, such
as local and global variables, functions, and imported symbols,
are represented by distinct abstract memory locations. Heap
allocations are named after their allocation site, using distinct
abstract memory locations to represent the memory objects
allocated at each site. Thus, each memory object in the program
is represented by one, not necessarily unique, abstract memory
location. If an abstract memory location may represent values
of pointer-compatible types, it is included in both P and M.
The universe of constraint variables is denoted V = P U M.
The Func(...) and Call(...) constraints ignore return values
and arguments that are not pointer compatible.

536

TRANS LOAD STORE CALL

h2{f}
q2 {I} q2 {l‘} P2 {l‘} Func(farnalo;"' aan-)
pP2q p2*xq *p2Dgq Call(h,7, a1, ,an)
p2{z} p2x x2¢ 72T

Gie 2D Q;, Vi € {1,...,77,}

Fig. 2. Rules of inference for sound points-to set tracking

B. Solving Constraints

The second analysis phase takes the sets M, P, and C' and
solves the constraints to produce the final solution Sol : P —
P(M). To formalize how the constraints propagate points-to
sets, a system of inference rules is used. The rules are shown in

Figure 2, and mostly correspond to those of Pearce et al. [25].

The rules are designed to have the following property: "If it
is possible for a pointer p to point to a memory location z at

runtime, it is also possible to infer the constraint p O {x}" [25].

The analysis solution can thus be defined as:
Sol(p) :={x € M | p 2 {z} can be inferred from C'}.

The set of constraints can be formulated as a constraint graph,
as presented by Heintze and Tardieu [28]. The technique has
been refined and visualized in several works [11, 14, 16, 25].
In the constraint graph, the variables in V' are drawn as
nodes, while constraints are drawn as edges and labels. Nodes
representing virtual registers are drawn as circles, while abstract
memory locations are squares. The node representing a pointer
p € P includes a braced list containing the targets of all
its base constraints (p 2 {x}). This list shows the current
approximation of Sol(p). Simple constraints (p 2 ¢) are drawn
as simple edges ¢ — p. Load and store constraints are drawn
as the complex edges o--» and --o» , respectively, where
the circle indicates the side being dereferenced. Figure 3 shows
an example of constraint variables and constraints, and the
corresponding constraint graph.

The inference rules from Figure 2 can all be represented as
operations on the constraint graph, using existing constraints
to infer new ones. The TRANS rule corresponds to propagating
the contents of Sol sets along simple edges. The LOAD and
STORE rules correspond to converting complex edges into
simple edges by dereferencing the end with the circle. Figure 4
shows inferring all possible constraints starting with the set in
Figure 3, by using the constraint graph.

The constraint graph can be extended to include function
calls by assigning each Func and Call constraint a unique
number, and adding labels to nodes representing functions, call
targets, arguments, and return values. The CALL inference rule
can be applied when a node labeled Call; has a node labeled
Func; in its Sol set. Applying the rule adds simple edges
representing the flow of possible pointees through arguments
Call; a,, = Func; a,, and through the return value Func; r —
Call; r. Figure 5 shows a C program with two functions and
the corresponding constraint graph.

P={p,qrsz} M

Il
——
8
NS
—

I OSORE
q2p 3 a

r 2 {y} ™

*q 2T @ {X}

s 2 xq

Fig. 3. A set of example constraints, and the corresponding constraint graph.
Note that y ¢ P, so there is no Sol(y).

ror p 4
s2ox 7 N
z 2 {y} @—» &5

s 2 {y}

Fig. 4. The solved version of the constraint graph from Figure 3. The inferred
constraints are listed on the left, and colored blue in the graph.

C. Worklist Solver

Multiple variations of worklist algorithms have been used to
solve constraint graphs efficiently [14, 16]. The worklist is a
list of nodes that need to be visited before solving is finished.
Visiting a node checks the constraints currently defined on
the node to see if any of the inference rules from Figure 2
can be used to infer new constraints. When a node receives
new constraints, it is added to the worklist to ensure the
new constraints are processed. Once the worklist is empty,
all constraints have been processed, and a fixed point has
been reached. The order in which nodes from the worklist
are processed is known as its iferation order, and can have a
drastic effect on solving performance [16].

1 intsx f(intsx x) {

2 ints y = xx; g D
3 return y; Func, a {a}
4)

5 intx(xh)(int=xx) = &f;

6 h

7 int a; Cally

8 intx g() { it}

9 intx p = &a;

10 intzx r = &p;

11 intx s = (xh)(r); £

12 return s; Func, o

13}

Fig. 5. A sample C program containing two functions and an indirect function
call. The corresponding constraint graph is drawn in black. The result of
applying the CALL inference rule to Call; and Funcy is drawn in blue.
Local variables that never have their address taken are represented by virtual
registers, drawn as circles. The remaining constraint variables are abstract
memory locations, drawn as squares.

537

D. Cycle Detection

An important observation made by Féahndrich et al. is that
cycles in the constraint graph can be eliminated [29]. When a
cycle of simple edges a — b — ¢ — ... — a is formed, any
member of Sol(a) also becomes a member of Sol(b), Sol(c),
etc. Instead of propagating pointees through the cycle, the
pointers in the cycle can share a single Sol set, saving time
and memory. Several techniques exist for discovering such
cycles, both before [23, 30] and during [11, 14, 16] solving.

E. Pointer Provenance

The C standard places restrictions on the use of pointers,
prohibiting out-of-bounds pointer arithmetic or using pointers
to freed memory [31]. This can lead to situations where two
pointers have the same address, yet are non-interchangeable,
as demonstrated in Defect Report DR260. The resolution from
the C language working group WG14 confirmed: “[Implemen-
tations may] treat pointers based on different origins as distinct
even though they are bitwise identical” [32]. The origin of a
pointer is known as its provenance, and compilers routinely
exploit this fact when performing optimizations [33].

Some points-to analyses handle pointer-integer casting by
tracking the pointees of integers [4, 15]. This may have
unintended side effects, however, as it adds the concept of
provenance to integers. Integers with identical representation
may no longer be interchangeable, which breaks common
assumptions, and has led to miscompilations [34]. When prove-
nance was standardized in Technical Specification 6010 [21],
the committee therefore went with a provenance-aware memory
object model called PNVI-ae-udi [35]. In this model, prove-
nance is not carried via integers (PNVI). Instead, casting an
integer to a pointer recreates the provenance of the memory
object it targets. The target must, however, have previously
had its address exposed (ae) as an integer.

III. HANDLING INCOMPLETE PROGRAMS

The analysis from Section II only produces sound solutions
when analyzing whole programs. This prevents its use in
situations where only parts of the source code are available,
such as when compiling a single file in a larger program or
when using external libraries. In these situations, the analysis
is said to operate on incomplete programs [4, 13].

In this section, we show how to extend the analysis to make
it sound for incomplete programs. The key insight is that this
can be accomplished by tracking which memory locations
escape the module, and which pointers originate from external
modules. Production C compilers also need to handle pointer-
integer conversions, which are covered in Section III-C. The
resulting analysis is sound for all well-formed incomplete C
programs, but its naive implementation is slow, as shown in
Section VI. A more efficient implementation is presented in
Section III-D.

A. Tracking Externally Accessible Locations and Pointers

An incomplete program is always executed as part of a larger
complete program, which may include arbitrary statements

and variables from other modules. We define the soundness
of points-to analysis solutions for incomplete programs as
follows: For an incomplete program A with pointers P and
abstract memory locations M, a points-to analysis solution
Sol : P — P(M) is sound if and only if Sol(p) contains all
pointees p may ever target at runtime, during any execution
of any complete program A is linked into.

We call the incomplete program being analyzed the current
module, and all other modules external modules. To conserva-
tively model all possible statements in external modules, the
analysis keeps track of which abstract memory locations in M
escape the current module. A memory location x € M may
escape when:

« x is exported from the current module as a named symbol.

« A pointer to x is an argument to an external function call.

« A pointer to z is the return value in a function f, where f

itself has escaped and may be called by external modules.

e x € Sol(y), and y has escaped.

Memory locations that escape from the current module, and
memory locations imported from other modules, make up the
set of externally accessible memory locations. Tracking which
memory locations are in this set lets the analysis retain some
precision when handling pointer values of unknown origin. The
situations in which a pointer p has an unknown origin are:

e p is the return value of an external function call.

e p is an argument in an escaped function f that may be

called from an external module.

« p is a memory location that is externally accessible. An

external module may thus store a new pointer into p.
These cases correspond to the pointers r, g, and p from
Figure 1, respectively. In all these cases, the pointer values
originate from external modules. This means they may only
target externally accessible memory locations. Importantly, a
pointer value of unknown origin may not target any memory
locations from the current module that have not escaped. Even
if an external module is able to correctly guess the address of
a non-escaped memory object, pointers created this way would
not have the correct provenance, and would be invalid [33].

B. The Q) Node

A new constraint variable is introduced, called 2, to keep
track of externally accessible memory locations. It represents
all memory locations defined in external modules that are
not represented by any other abstract memory location. This
memory may contain pointers, so {2 € P. Effectively, Sol(Q2)
contains all memory locations that are externally accessible.
It can also be pointed to, so 2 € M. Along with the) node,
the following constraints are added:

@ a2{0} @ 920 O =XY)

@ Call(2,9Q,---,9) (&) Func(,Q,---,9Q)
Constraint (1) represents the fact that any pointer represented
by 2 may target memory represented by). This also gives the

desired property that loading from an unknown pointer results
in another unknown pointer. Any pointer p with an unknown

538

// R -
¥ o Cally
Q {getPir}
II;unce
< uncegr
y x 5] Funcga, -
Calle Calljr
Caller > {w,
w z @ Callga Q, z, getPtr
{Q, z, getPtr, p, callMe, x}
- | P callMe, x}
q
Funcia ** ** p
{Q, z, getPtr| [callMe getPtr {Q, z, getPtr
p, callMe, x} Funcy Funcg p, callMe, x}

Fig. 6. The constraint graph corresponding to the program in Figure 1. Black
constraints are added during phase 1, and blue constraints are added during
solving. The direct function call on line 10 has been given a dummy pointer
to getPtr to be the target of the Call; constraint.

origin is given the constraint p D (2, which makes p target)
itself, as well as all externally accessible memory locations.

The remaining constraints are used to conservatively repre-
sent all statements that may ever occur in any external module.
Constraint (2) represents external modules loading from any
pointer they may hold, causing the pointees of escaped pointers
to also escape. Constraint @ represents external modules
storing unknown pointer values into any memory that has
escaped, giving all escaped pointers unknown pointees.

Constraint (4) handles functions that escape from the current
module being called from external modules. Pointer-compatible
return values and function arguments are propagated to and
from €, respectively. Constraint (5) handles cases where
indirect function calls target an unknown pointer, which may
target functions in external modules.

Finally, copies of constraint (5) also need to be added to
all nodes representing functions imported from other modules.
Recall that the €2 node only represents external memory that is
not otherwise represented by any other abstract memory loca-
tion, so imported functions need their own Func(-) constraint.
If the imported function is a common library function, it is
also possible to use a handwritten summary function instead
of the overly conservative constraint (5).

The constraints on the 2 node effectively model all state-
ments that may be executed in external modules. The constraints
are expressed using the regular constraint language, which
means existing constraint graph solvers can support the {2 node
with only minor modifications. The main modifications required
to handle incomplete programs are the following additions to
the first phase of the analysis:

« The 2 node and its constraints are added.

o Any exported global variable or function e is marked as
externally accessible (2 2 {e}).

« Any imported global variable or function % is marked as
externally accessible (2 D {i}).

o Any imported function f must either be represented by a
generic constraint Func(f,,---,Q), or be mapped to a
custom summary function for f.

The additions to the constraint graph only consider top-level
definitions and declarations from the analyzed program. This
is sufficient, as named symbols form the basis of all cross-
module interactions. The constraints on the {2 node ensure that
all statements that may be executed in external modules are
reflected in the current module’s analysis solution. Figure 6
shows the constraint graph for the program in Figure 1.

In the example program, the exported symbols are z, p, and
callMe, while the only imported symbol is getPtr. These
are all externally accessible as symbols, and are thus included
in the initial Sol(2) set. Since getPtr is an externally defined
function, it is also given the Func, constraint, whose return
value and arguments are all represented by €.

The constraints defined on the external node ensure that
all statements that may be executed in external modules are
handled when the graph is solved. The €2 load and store self-
edges add simple edges to and from all memory locations
in Sol(f2). One of these edges, p — (), causes z to be
propagated from Sol(p) to Sol(€2), representing z’s escape
from the current module. The edge {2 — p adds all externally
accessible memory locations to Sol(p), representing the fact
that external modules may store pointer values of unknown
origin into p.

The Call. constraint on 2 represents external modules
calling all externally accessible functions, such as callMe.
Applying the CALL inference rule adds the simple edge
) —» ¢. Every externally accessible memory location is
propagated along this edge, representing that ¢ may hold a
pointer value of unknown origin. Likewise, the function call
on line 10 targets getPtr, which has the Func, constraint,
adding the simple edge {2 — r to represent pointer values of
unknown origin. r itself does not escape, so it can also point
to w without making w externally accessible.

C. Pointer-Integer Conversions and Pointer Smuggling

To make the points-to analysis sound under the PNVI-ae-
udi provenance model, integers can not be pointer compatible.
Instead, when a pointer p is cast to an integer, all pointees of
p are marked as externally accessible by adding the constraint
Q) O p. When an integer is cast to a pointer ¢, it soundly
handles having an unknown origin by adding the constraint
q 2). The flow of pointer values via integers is thus soundly
represented via the €2 node. This also handles cases where
pointers are cast to integers in the current module, and cast
back to pointers in an external module, or vice versa.

Since integers are not pointer compatible, a memory location
x representing an integer variable is not included in the set
of pointers P. The analysis does not track the pointees of =z,
and there is no Sol(x) set. It is, however, still possible for
constraints of the form p O x or x D p to appear, where p € P.
These constraints effectively represent conversions between
pointers and integers, so a sound analysis must instead treat
these constraints as p O 2 or) O p, respectively.

The last piece necessary to make the analysis sound is
to handle indirect casting of pointer types through type
punning. By casting an int* to a char+*, and reading eight

539

INQ) TRANSS) Tof) STORETO? LOADFROM{)? STORESCALAR LOADSCALAR
p3Q Q3dp *p 2D q q 2 *p *p J Q) Q3 xp
Q3 {r} qg2p p2{z} pIQ pdQ p 2 {z} p 2 {x}
Qdp g3 Q Q3 {z} Q3¢ q32Q z3dQ Q3dz
p3IQ
CALLIMP CALLS? CALLEDBY)
Call(f,r,a1,--- ,ax)
f2{g} Call(f,r,a1, -+ ,ax) Func(f,r, a1, ,ax)
ImpFunc(g) f30 Q3{f}
r 10 r 10 Qdr

O Ja;, Vie{l, -k}

O Ja;, Vie{l, -k}

a; 3Q, Vie{l, -k}

Fig. 7. Additional rules of inference added to represent the 2 node implicitly.

consecutive chars, an int« has effectively been converted
from a pointer to a scalar. Reversing this process converts the
scalar back into a pointer. We call this indirect casting via
memory pointer smuggling.

Pointer smuggling can be handled soundly by adding
constraints on loads and stores of pointer-incompatible types.
Given a charx* p, loading a char from p adds the constraint
Q) D *p, and storing a char to p adds the constraint xp D €.
If p happens to have a pointer-compatible target ¢ € Sol(p), it
will correctly be marked as 2 O ¢ and g O €2, respectively.

D. Representing () implicitly (IP)

The introduction of the {2 node enables the sound points-
to analysis of incomplete programs, expressed within the
conventional language of constraints for Andersen-style points-
to analysis. The €2 node is, however, likely to be a hot spot
during solving. Every externally accessible memory location is
included in Sol(f2), and all pointers of unknown origin have
Sol sets that are supersets of Sol(€2). This Cartesian product of
pointer-pointee relations scales poorly, both in memory usage
and solver runtime. Cycle detection is of limited help, as can
be seen in the solved constraint graph in Figure 6. Only p is
in a cycle with €2, while ¢ and r are not.

The key observation to make the analysis scalable is that
the € node can be represented entirely implicitly. The €2 node
is removed, and six new types of constraints are added to the
constraint language in its place, replacing constraints previously
defined using the (2 node. The new constraint types, shown in
Table II, use the symbol J to clearly distinguish them from
the original constraint language. In the new language, €2 is
strictly a language construct, not a constraint variable.

Turning € into a part of the language allows us to implement
the behavior described in Section III-B using an alternative set
of inference rules, shown in Figure 7. The new rule TRANSS)
avoids propagating copies of Sol(f2) around the constraint
graph, by instead propagating the constraint p J €2 itself along
simple edges p — ¢. The rule TO(2 marks targets sent to €2
as externally accessible, while INS) emulates the store and load
self-edges of the {2 node. The STORETOS) and LOADFROM()
rules handle storing and loading of pointers that may have
an unknown origin, while the CALL* rules emulate the Func
and Call constraints on 2. In total, the new rules replicate all

TABLE I
CONSTRAINT TYPES ADDED IN THE EXTENDED LANGUAGE TO REPRESENT
THE 2 NODE IMPLICITLY.

Old New Comment

QD {z} Q J{z} x is externally accessible

p2Q pJQ p targets all externally accessible memory
Q2Op Qdp Pointees of p are externally accessible

*p D) *p 1 Q) A scalar is stored at xp

QD *p Q Jx*p *p is loaded as a scalar
Func(f,9Q,---,Q) ImpFunc(f) f is an imported external function

behavior that was previously modeled by the 2 node, without
inferring any constraints from the original language.

There are now two ways of encoding that a pointer p may
point to a target memory location x. If the solver infers the base
constraint p O {x}, we say that = is an explicit pointee of p. If
the solver infers both constraints p J Q and Q J {x}, we say
that x is an implicit pointee of p. While it would be possible to
add a rule that infers explicit pointees from implicit pointees,
this rule has been omitted on purpose. Instead, the definition
of Sol is changed to include both explicitly and implicitly
encoded pointers, defined as Sol. and Sol;, respectively:

Sole(p) .= {x € M | p DO {«} has been inferred}

Sol, (p) E, p3dQ has been inferred
ol; = .
P otherwise

{+
Sol(p) = Sole(p) U Sol,(p)

where £ = {x € M | Q 3 {x} has been inferred}

The final Sol sets end up being identical to the solution
produced using the explicit 2 node. The benefit of introducing
the implicit pointee representation is that many pointer-pointee
relations only exist because all pointers of unknown origin may
target all externally accessible memory locations. Representing
these possible pointer-pointee pairs explicitly would require one
base constraint per pair, which scales poorly both in memory
usage and solver runtime. The implicit representation keeps
the Q 3 {z} and p J 2 constraints separate, and leaves the
Cartesian product of pointer-pointee relations implicit. Only
pointer-pointee relations that go via {2 can be represented
implicitly, so explicit pointees are still used to represent all other

540

kinds of pointer-pointee relations. The conventional worklist
solver can also be modified to include the new inference
rules shown in Figure 7. The new constraint types can all be
implemented as 1-bit flags on constraint variables. Pseudocode
for the modified worklist algorithm is given in Algorithm 1.

IV. PREFER IMPLICIT POINTEES (PIP)

The introduction of the implicit pointee representation gives
the analysis an efficient way to encode the pointer-pointee
relations between all pointers of unknown origin and all
externally accessible memory locations. It is, however, possible
for a pointee to be represented both implicitly and explicitly,
i.e., € Sol.(p) A x € Sol;(p). This happens when the solver
infers all three of the following constraints:

p2{z}

In these cases, we say that = is a doubled-up pointee of p.
These doubled-up pointees do not affect the final solution, but

p2Q Q3 {z}

are undesired, as they have a higher representational overhead.

Explicit pointees may also be propagated along simple edges
or be used to infer additional simple edges, which can only
serve to create more doubled-up pointees. This extra work

increases runtime, without ever affecting the analysis solution.

Prefer Implicit Pointees (PIP) is an online solver technique
that attempts to reduce the number of doubled-up pointees
that occur during solving. It is based on the observation that
for any node p with the constraints 2 J p and p J €, the
final solution will always satisfy Sol(p) = Sol;(p). Thus, any
explicit pointee of p is guaranteed to end up as a doubled-up
pointee, and can safely be removed, or never added in the first
place. In practice, the technique works by adding the following
checks to the worklist algorithm presented in Algorithm 1:
1) When the algorithm visits a node p, and p is not marked

Q) 1 p, it starts by checking if p can gain the flag
through “backpropagation”. This is possible if there exists

an outgoing simple edge p — ¢, where ¢ is marked Q 3 q.

In that case, any member x € Sol..(p) will be propagated to
Sol.(q), where it will be marked 2 J {z}. Adding 2 J p
thus does not affect the final solution.

2) If a node p is marked both p J © and 2 O p, the set
Sol.(p) can be cleared, after all members x € Sol.(p) have
been marked 3 {z}.

3) When attempting to add an edge p — ¢, first check if the
node g has the constraint €2 J q. If so, backpropagate it to
Q Jdp If Q3 p, and ¢ 3 (), the addition of the simple
edge p — ¢ can be skipped entirely, as Sol(q) becomes a
superset of Sol(p) via Q.

4) Before propagating explicit pointees along a simple edge

p — q, check if the nodes are marked ¢ 3 €2 and Q2 J p.

If so, the simple edge can be removed, using the same
reasoning as in the previous point.
By adding PIP, the worklist algorithm gains some important
properties: Any node x that is marked both z J Q and Q J z
will be visited by the worklist at most once. Sol.(z) will also
be empty in the final solution. Nodes like are common, as
they include all externally accessible memory locations.

Algorithm 1 Worklist algorithm for inferring all constraints
from Figure 2 and Figure 7. The blue comments show where
to add extra logic for the PIP technique.

Input: Sets of pointers P, memory locations M and constraints C'
Sole(p) < {x € M | (p D {z}) € C}, Vp € P v Initialize Sol,
procedure PROPAGATEPOINTEES(f, t) > Propagates from [to t
Sole(t) + Sole(t) USole(f)
if f is marked f O € then mark ¢ as ¢t J Q)

if Sol¢(t) changed or ¢ was marked then W « W U {t}

procedure CALLTOIMPORTED(r, a1, - - - ,ak)

mark r as r J Q

mark a; as Q Ja;, Vie{l,--- k}

W<+ WuU{v € (PUM) | v gained a flag in this procedure}

procedure MARKEXTERNALLYACCESSIBLE(z)

mark zas Q J{z} and z JQ and Q Jz

for all Func(z,r,a1,--- ,ax) € C do
mark r as Q Jr
mark a; as a; 1 Q, Vie{l,--- k}

W+« WuU{v € (PUM) | v gained a flag in this procedure}

> Handle nodes that are externally accessible from the start <

for all z marked 2 J {z} do

| MARKEXTERNALLYACCESSIBLE(x)

> Initialize Worklist with every node <

W< PUM

while W # 0 do

n < POPWORKLIST(WV)

AE + {} > Simple edges to add

> PIP addition 1: Backpropagate to make 2 J n if possible <

if n is marked) J n then

for all x € Sol.(n) do
if = not marked 2 J {z} then

L | MARKEXTERNALLYACCESSIBLE(T)

> PIP addition 2: If Q@ Jn and n 1 Q, clear Sole(n) 4

for all p O n in C do > Simple edges

> PIP addition 4: If p 3 Q and 2 2 n, remove the edge <

_ PROPAGATEPOINTEES(n, p)

for all xn O p in C do
for all z € Sol.(n) do
| AE+ AEU{x D p}
if n is marked n 3 Q2 then

.| mark pas Q Jp, add p to W if mark is new

if n is marked *n 3 () then > Storing scalar
for all = € Sol.(n) do
| mark x as x 3 €2, add x to W if mark is new

for all p D *n in C do > Load edges
for all z € Sol.(n) do
| AE+ AEU{pDz}
if n is marked n 3 Q) then
| mark p as p J(, add p to W if mark is new

if n is marked €2 3 *xn then > Loading scalar
for all = € Sol.(n) do
| mark x as Q J x, add = to W if mark is new

> Store edges

for all Call(n,r, a1, ,ax) in C do > Calls
for all z € Sol.(n) do
for all Func(z, e, a1e, - ,ake) in C do
L AE(—AEU{TQT‘.,OJ. 2047“' ; Qke 2 ak}

if = is marked ImpFunc(z) then
| CALLTOIMPORTED(r, @1, ,Gk)

if n is marked n J Q) then

.| CALLTOIMPORTED(r, a1, -+ ,ak)

for all (p 2 q) € AE\C do > Add new simple edges
> PIP addition 3: Skip adding edge if p 2 2 and Q2 J q <
C«Cuf{p2q}

. PROPAGATEPOINTEES(g, p)

541

TABLE III
PROGRAMS USED TO BENCHMARK POINTS-TO ANALYSIS RUNTIME AND
PRECISION. V' IS THE SET OF CONSTRAINT VARIABLES, AND C'IS THE SET
OF CONSTRAINTS, PER ANALYZED FILE.

TABLE IV
THE TECHNIQUES THAT CAN BE ENABLED OR DISABLED, AND THE
CHOICES OF SOLVER WHEN CONFIGURING THE POINTS-TO ANALYSIS.
SQUARES ARE BINARY CHOICES, AND DASHES ARE EXCLUSIVE CHOICES.

Summary of non-empty C files

IR instructions 4 |C|
Name KLOCT #Files Mean Max Mean Max Mean Max
500.perlbench 362 68 22725 165497 4226 28236 6686 47046
502.gcc 902 372 16244 535524 3434 64847 5148 101572
505.mcf 2 12 1228 4778 304 1197 530 2149
507.cactuBSSN 102 345 5691 123596 1251 24770 2665 60339
525.x264 24 35 10963 87991 1582 11922 2961 22438
526.blender 981 996 8600 443034 1917 99558 2969 142950
538.imagick 155 97 11195 154125 2425 29864 4336 53287
544 .nab 12 20 5741 22276 1509 5593 2712 11299
557.xz 15 80 1448 18935 220 1470 390 3074
emacs-29.4 253 143 14085 260284 3377 48127 5367 77533
gdb-15.2 172 251 5508 101443 1179 36708 1887 51718
ghostscript-10.04 797 1116 7042 441161 1243 16665 2078 30929
sendmail-8.18.1 89 115 3752 39205 799 7675 1453 14410

TTotal lines of code, excluding whitespace and comments, divided by 1000.

Worklist
Policy

Fig. 8. All paths through the flowchart represent valid combinations, except
for choices connected by dashed red edges, which are incompatible.

V. METHODOLOGY

The described analysis has been implemented in the jlm
research compiler [36], which converts LLVM IR [27] into an
intermediate representation based on the Regionalized Value
State Dependence Graph (RVSDG) [37]. All instructions that
are relevant to points-to analysis in the original LLVM IR have
a one-to-one representation in the RVSDG, making the results
applicable to LLVM IR or other SSA-based IRs. The analysis
is performed on all nine C benchmarks from SPEC2017 [22],
and four C programs often used in the literature [9, 11, 25].
The benchmarks are summarized in Table III, totaling 3 659
non-empty C files. Evaluation is performed in the context of a
conventional compilation model, where each C file is analyzed
separately. The files are converted to LLVM IR by clang
18.1.8 using optimization level 00, and analyzed by jlm
on an Intel Xeon Gold 6348 CPU running at 3.0 GHz.

A. Analysis Configurations

The analysis implementation has several options that enable
and disable different techniques. Five of these techniques are
from the literature, where they have been shown to improve
solver performance in the context of whole-program analysis.
This paper evaluates all techniques in the context of analyzing
individual files. The full set of options is given in Table IV, and
Figure 8 shows a flowchart depicting all valid combinations.

Technique Abbrev. Described in

Pointer representation

— Only Explicit Pointees EP Section III-B

— Implicit Pointees 1P Section III-D

Offline constraint processing

[0 Offline Variable Substitution OVS Rountev et al. [23]
Solver

— Naive Solver Naive Andersen’s thesis [20]
— Worklist Solver WL Section II-C

Worklist Iteration Order

— First In First Out FIFO

— Last In First Out LIFO Pearce et al. [14]

— Least Recently Fired LRF

— 2-Phase Least Recently Fired 2LRF Hardekopf and Lin [16]
— Topological TOPO Pearce et al. [25]
Worklist Online Techniques

O Prefer Implicit Pointees PIP Section IV

[Online Cycle Detection OCD Pearce et al. [16]

[0 Hybrid Cycle Detection HCD Hardekopf and Lin [16]
[Lazy Cycle Detection LCD Hardekopf and Lin [16]
O Difference Propagation DP Pearce et al. [14]

A configuration is described by the techniques it uses. For
example, the configuration called IP+WL (LRF) +OCD+PIP
uses the implicit pointer (IP) representation, the worklist (WL)
solver with the Least Recently Fired (LRF) iteration order,
Online Cycle Detection (OCD), and the Prefer Implicit Pointees
(PIP) techniques. Not all combinations of choices are valid,
e.g., OCD detects all cycles as soon as they appear, so there
is no point in combining it with any of the opportunistic cycle
detection techniques (HCD or LCD). In total, there are 208
valid configurations, and each configuration is benchmarked
solving the constraint graph for each C file 50 times. The
solution is validated to ensure that all configurations produce
the exact same solution.

B. Implementation Details

Constraint variables are indexed using 32-bit integers, and
their Sol. sets are implemented as hash sets. Base constraints
are placed directly into Sol.. The six constraints added in the
extended constraint language (see Table II) are implemented
as 1-bit flags on each constraint variable. The only external
library functions with special handling are malloc, free,
and memcpy. Cycle unification uses union-find with path
compression and union-by-rank [38], and a single Sol. set
is shared between the members of a union. Constraints are
indexed by type and node to make iterating fast. Hash sets are
used to avoid duplicated constraints. Simple edges involving
one pointer incompatible variable, e.g., v € M A x ¢ P, must
be treated as pointer-integer casts. This is achieved in practice
by making Sol(x) = Sol(2). When the explicit {2 node is
used, x is unified with Q2. When the implicit 2 node is used,
x is marked both x 3 2 and 2 3 z.

542

B BasicAA B Andersen B Andersen + BasicAA

N
EN
P

HERERENN
N

MayAlias Response %

ONRO®M®ONRKOO®®O
A T

T ST VA o N A ¢ ~ ¢
P D e K R Gk gt o o P Lx &1 Lo BN Lo
R R o A SRR
& o ST LTS

&
&

Fig. 9. Percentage of intra-procedural alias analysis queries that return “May
Alias”, when querying all load/store and store/store pairs. Lower is better.

VI. RESULTS

After performing the points-to analysis on all C files, 51%
of all pointers end up pointing to external memory (i.e.,
p 3 Q). Confirming that the analysis still provides useful
precision is covered in Section VI-A. While all 208 solver
configurations produce the same solution, they have significant
runtime variation, which is presented in Section VI-B. Finally,
Section VI-C covers solver scalability.

A. Precision

We evaluate the precision of a points-to-analysis solution
in terms of a pairwise alias-analysis client, by evaluating
the load/store conflict rate, as described by Nagaraj and
Govindarajan [39]. For each store instruction, the analysis is
queried about possible aliasing with every other load and store
instruction in the same function. The analysis returns NoAlias
if the instructions have distinct points-to sets. Otherwise,
MayAlias is returned.

For comparison, LLVM’s BasicAA is used, which performs
ad-hoc IR traversals to find the origin(s) of pointers. It does not
handle function calls or nested pointers, but knows that local
variables that never have their address taken never alias with
anything. It also tracks pointer offsets when possible. Both
analyses return MustAlias when the pointers are identical.

The results are shown in Figure 9. The analyses have different
strengths, so the Andersen + BasicAA-bar shows the precision
achieved by combining them, as is often done in practice.
While the benefit of adding the Andersen-style points-to
analysis varies by benchmark, the reduction in MayAlias-
responses is on average 40%, indicating that the analysis adds
valuable information for compiler transformations to exploit.

B. Solver Runtime

The choice of solver configuration has a large impact
on the runtime of the constraint-solving phase, the most
important choice being that of pointer representation. Table V
shows the distribution of solver runtimes for the benchmarked
C files, for selected configurations. It first compares the
fastest configuration using explicit pointees (EP) against the
fastest configuration using implicit pointees (IP) without
PIP. On average, the EP+OVS+WL (LRF) +OCD configuration

TABLE V
CONSTRAINT GRAPH SOLVER RUNTIME FOR SELECTED CONFIGURATIONS.

Solver Runtime [ps]

Configuration pl0 p25 p50 P90 P99 Max Mean
EP+OVS+WL (LRF) +OCD 40 168 1060 29 480 414729 43437029 36322
EP Oracle 21 118 886 25191 347921 39594 566 32376
IP+WL (FIFO)+LCD+DP 19 62 249 2562 20015 1112770 2133
IP+WL (FIFO) 15 51 219 2337 19526 40869977 15370
IP+WL (FIFO) +PIP 16 52 222 2260 14220 203 850 1105

T
EP Oracle is faster
IP+WL(FIFO)+LCD+DP is faster

o
s

v
s

<31lus <1264us

<73us

IS
s

N
s

[
4

Runtime ratio
IP+WL(FIFO)+LCD+DP / EP Oracle
w
!

o
s

T T T T T T
1000 1500 2000 2500 3000 3500

Files sorted by IP+WL(FIFO)+LCD+DP solving time

14 T
IP+WL(FIFO) is faster

L2 IP+WL(FIFO)-+PIP is faster

1.0 1
0.8 1
0.6 1
0.4 4

0.2+

< 60us <270us

Runtime ratio
IP+WL(FIFO)+PIP / IP+WL(FIFO)

<1138us ‘

0.0 1

1000 1500 2000 2500 3000 3500

Files sorted by IP+WL(FIFO) solving time

0 500

Fig. 10. Solver runtime ratio of IP vs. EP (top), and PIP vs. no PIP (bottom).

takes 36.322 ms per file to solve the constraint graph, while
IP+WL (FIFO) +LCD+DP takes 2.133 ms, around 17x faster.

Next, we consider an EP Oracle, which always picks
the fastest EP configuration for each file. The oracle saves
time on most files, but ends up being just 8% faster than
EP+OVS+WL (LRF) +OCD in total, as it is unable to signifi-
cantly improve the runtime of the slowest outliers. The IP
configuration is thus still 15x faster than the EP Oracle.

While IP+WL (FIFO)+LCD+DP is the fastest config-
uration without PIP, the fastest configuration overall is
IP+WL (FIFO) +PIP, shown in the bottom half of Table V.
With an average solver runtime of 1.105 ms per file, it is 1.9
faster than the best configuration without PIP. Adding any of
the techniques from the literature to this configuration only
increases the average solver runtime. Taking advantage of these
techniques would thus require heuristics to determine for which
files each technique should be used.

Lastly, we consider the effect of PIP alone by removing
it from the fastest configuration, leading to IP+WL (FIFO).
As seen in Table V, enabling PIP decreases the average solver
runtime by 14 x, demonstrating that it is essential for reducing
runtime. While the combination LCD+DP decreases runtime as
well, it only reduces the average by 7x as depicted in Table V.

543

A detailed per-file comparison is shown in Figure 10. The
upper graph depicts the relative solving time between the EP
Oracle and the fastest configuration without PIP. Among the
files where the EP Oracle is better, 98% are solved using
the Naive solver, which happens to be efficient on some files
regardless of pointer representation. For the seven rightmost
red dots, the EP Oracle uses OVS, as that technique proves
beneficial on some large files, but not enough to be included
in the on average fastest IP configuration.

The relative effect of enabling PIP is shown in the lower
graph of Figure 10. The results are not as conclusive as for
IP vs. EP, but they clearly show a reduction in solving time
for the longest running cases. For 83% of the files, enabling
PIP makes the solving time slower, by 2.9% on average.
For the files that take more than 1138us to solve, which
represent 81% of total solver runtime, 52% of them are slower
with PIP, with the largest slowdown being 9%. In contrast,
for the 48% of the files where PIP is faster, the average
solving time is reduced by 16x. In the most extreme case, the
slowest file with IP+WL (FIFO), base/gdevpl4.c from
ghostscript, goes from 41s to 9.5 ms, making an otherwise
pathological file unnoteworthy. This has a drastic effect on
the Max column in Table V. The fastest configuration without
PIP, IP+WL (FIFO) +LCD+DP, uses 939 ms on the same file,
which is much better than 41 s, but still 4.6 slower than the
slowest file solved with IP+WL (FIFO) +PIP.

C. Solver Scalability

The worklist algorithm spends most of its time iterating
through and propagating Sol. sets between nodes, which
makes the total number of explicit pointees a relevant metric
for understanding solver runtime. They also account for the
majority of memory usage. All configurations produce identical
solutions, but may use different amounts of explicit pointees.
Statistics about the number of explicit pointees produced by
the different configurations are shown in Table VI.

The topmost configuration detects all cycles, which helps
to reduce the number of explicit pointees by making nodes in
cycles share Sol. sets. The next configuration uses the implicit
pointee representation to represent that pointers of unknown
origin may target any externally accessible memory locations.
Then comes the fastest configuration without PIP, which adds
some cycle detection. Lastly, the fastest configuration overall,
which uses PIP to avoid doubled-up pointees. The results make
it clear that cycle elimination is in no way a substitution for
using the implicit pointee representation. It also shows that
some files end up with solutions containing almost exclusively
doubled-up pointees, which PIP is able to skip, reducing
memory usage drastically.

VII. RELATED WORK

The handling of incomplete C programs has not received
much attention in the points-to analysis literature, even though
the problem was already pointed out by Hind [13] more than
20 years ago. Most of the previous works on points-to analysis
sidestep the problem by assuming whole-program analysis is

TABLE VI
NUMBER OF EXPLICIT POINTEES IN THE SOLUTIONS.

Number of explicit pointees

Configuration pl0 p25 p50 po0 P99 Max Mean
EP+OVS+WL (LRF) +0CD 38 305 3169 106575 1599 946 154 866 262 147 841
IP+WL (FIFO) 18 63 276 2357 30162 2145215 3188
IP+WL (FIFO) +LCD+DP 18 63 274 2323 20486 1897247 2816
IP+WL (FIFO) +PIP 17 59 258 1977 11700 95 195 922

performed [6—12, 16—18], where external functions, such as
standard library functions or system calls, are summarized to
complete the missing program parts [6, 14—-16].

Another approach is the computation of module-based analy-
sis summaries, that are embedded along with the compilate. The
analysis consumer stitches these summaries together to form a
complete picture of the analysis results [40—43]. This approach
is particularly popular for JIT compiled languages, where the
summaries are produced statically and then consumed by the
JIT compiler, but has also been proposed for conventionally
compiled languages [44, 45]. However, the problem with this
approach is that it defers the analysis to link time, preventing
its use by per-module optimizations. Even at link time, a
program might still not be complete, as some libraries may not
have analysis results available, or libraries may be dynamically
loaded at runtime.

There are only a handful of works that address the handling
of incomplete C programs. Andersen [20] addresses the issue
by introducing the abstract memory location Unknown. The
location represents all accessible memory locations at runtime,
and any pointer pointing to it may alias with any other
pointer in the program. This approach has the downside that a
complete loss of precision arises when an unknown pointer is
dereferenced on the left-hand side of an assignment.

Smaragdakis and Kastrinis [46] present a method for
sound points-to analysis in Java. Similarly to PIP, they avoid
materializing points-to sets of pointers that can be shown to
originate from what they call opaque code. However, they
model pointers originating from or escaping to opaque code
as being able to point to everything, including locations that
provably did not escape. This works for Java, where all pointer
accesses are based on named fields on a typed heap, but does
not work in C, where pointers can be dereferenced directly.

The closest to our work is Lattner et al. [4]. They present a
context-sensitive and field-sensitive unification-based analysis
with full heap cloning that supports incomplete programs. Their
algorithm has a complete flag, denoting that all operations on
objects at a node have been processed. Nodes that are reachable
from unavailable external functions or global variables are not
marked as complete, indicating that the information represented
by this node must be treated conservatively. While their work
yields sound solutions for incomplete programs, it does not
generalize to inclusion-based analyses, which typically give
more precise solutions.

544

VIII. CONCLUSION

This paper presents an Andersen-style points-to analysis that
efficiently produces sound solutions for incomplete programs.
We introduce the implicit pointee representation to efficiently
represent unknown pointers that possibly target every externally
accessible memory location, and show in our evaluation against
several state-of-the-art techniques that it is by far the most
important factor for scalability. It achieves a total speedup of
15x over always picking the fastest configuration using an
explicit pointee representation. We also introduce the Prefer
Implicit Pointees (PIP) technique that further reduces the
number of explicit pointees by avoiding doubled-up pointees
in the solution, making the analysis an additional 1.9x faster
than the fastest configuration without it. It also renders the
other evaluated speedup techniques superfluous for incomplete
programs, as none of them were able to outperform or aid
PIP in terms of average solver runtime across all benchmarks.
Most importantly, the average solver runtime of 1.1 ms per file
makes our sound analysis practical for production compilers.

IX. DATA-AVAILABILITY STATEMENT

The implemented analysis and experimental setup, and in-
structions for reproducing the results in the paper, are available
as an artifact on Zenodo (DOI: 10.5281/zenodo.16900791) [47].
The latest version of the j1m compiler is found on GitHub [36].

APPENDIX A
ARTIFACT APPENDIX

A. Abstract

Our artifact provides the source code for the j1m compiler,
including an implementation of the Andersen-style analysis
presented in the paper.

The artifact also includes scripts for performing the bench-
marks described in the paper, and producing the figures and
tables from the paper using the benchmark results.

The artifact contains the four free open-source benchmarks
from Table III. It also contains redistributable versions of the
SPEC2017 benchmarks, with the exception of 505.mcf. If
you provide your own copy of SPEC2017, the full set of
benchmarks from the paper will be used.

B. Artifact check-list (meta-information)

o Algorithm: Points-to analysis / Alias analysis.

o Program: Four open-source benchmarks (source included). Nine
benchmarks from SPEC2017 (8 of which have redistributable
sources included).

« Compilation: clang 18 or above, or g++ 12 or above.

o Transformations: Compiling C to LLVM IR with clang 18.

« Run-time environment: We recommend running in a container
based on the provided Dockerfile. It can also run directly
on Linux, such as Ubuntu 24.04, if the dependencies listed in
the Dockerfile are installed.

« Hardware: We recommend a CPU with at least eight cores,
and at least 32 GB of RAM.

o Execution: Should be the sole user on CPU, with fixed
frequency. Avoid running other applications while executing
the artifact to limit interference.

o Metrics: Analysis execution time, analysis precision.

¢ Output: Graphs and tables included in this paper. Numbers
referenced in the text of the paper. Expected results included.

« Experiments: Create the Docker image and run the provided
script in it.

« How much disk space is required (approximately)?: 40 GB.

o How much time is needed to prepare workflow (approxi-
mately)?: 5 minutes.

o How much time is needed to complete experiments (approx-

imately)?: 9 hours.

Publicly available?: Yes.

Code licenses: LGPL 2.1

Data licenses: See sources/README.md

Archived?: https://doi.org/10.5281/zenodo.16900791

C. Description

1) How delivered: Our source code, benchmarking scripts, and
the four open-source benchmarks + eight redistributable SPEC
benchmarks, are available at the above DOI.

2) Hardware dependencies: The benchmarks should run on a CPU
with at least eight physical cores and 32 GB of RAM.

3) Software dependencies: We recommend using the provided
Dockerfile to build a Docker image that contains all
necessary dependencies.

4) Data sets: If you own a copy of SPEC2017, then you can
provide it. Otherwise the included redistributable sources will be
used, with the following differences: The 505 .mcf benchmark
is skipped. A subset of the C files in 500.perlbench are
skipped. 538 . imagick uses the original ImageMagick source
code without SPEC’s modifications.

D. Installation

Extract the file pip-2026-artifact.tar.gz in a suitable
location.

$ tar xzf pip-2026-artifact.tar.gz
$ cd pip-2026-artifact

If you own SPEC2017, place cpu2017.tar.xz in the folder
sources/programs/. Avoid symlinking as it may not work inside
the Docker container.

If your machine has more than 32GB of RAM and more than
eight physical cores, you can update the PARALLEL_INVOCATIONS
variable in run.sh to make the evaluation run faster. (Default is 8).

E. Experiment workflow
Build the Docker image:
$ docker build -t pip-2026-image .
Configure your CPU to run at a stable frequency, e.g., using:

$ cpupower frequency-set
<~ —--min 3GHz --max 3GHz --governor performance

The evaluation for the paper was performed at 3 GHz, but pick
a frequency that is low enough to prevent frequency boosting or
throttling on your own system.

Execute the run.sh script inside the Docker image, with the
current directory mounted:

$ docker run -it
— —-mount type=bind, source="$ (pwd)",target=/artifact
<~ pip-2026-image ./run.sh

For details about what the script does, see the README . md file. If the
command is aborted, it can be restarted, and it will continue where it
left off. To fully reset the evaluation workflow, append clean to the
end of the command.

Running without Docker: If you wish to run on a different Linux
system, dependencies might be located at different paths. Compilation
commands may thus need to be changed, to reference the correct
include paths. See README.md for re-creating the list of traced
compiler invocations for your own system.

545

https://doi.org/10.5281/zenodo.16900791

F. Evaluation and expected result

After running the experiment, results can be found in results/:

Table III: file-sizes-table.txt

Figure 9: precision.pdf

Table V: configuration-runtimes—-table.txt
Figure 10: ip_sans_pip_vs_ep_oracle_ratio.pdf
and pip_vs_best_just_without_pip_ratio.pdf
Table VI: configuration-memory-usage-table.txt

The folder also contains . 1og files where numbers mentioned in the
text of the paper are calculated.

Results based on measured runtime will vary based on the machine,
but the overall ratios between configurations should be roughly the
same. The quantiles given in the tables should also be similarly
distributed, even if they are overall faster or slower.

Precision numbers and the number of explicit pointees can have
tiny variations due to some of the open-source benchmarks configuring
themselves slightly differently on different systems.

G. Experiment customization

Custom experiments can be performed by, for example:

Creating a custom sources. json file containing compilation
commands for any C program. This file can then be passed to
the benchmark . py script.

Modifying the benchmark.py script to add extra flags to
clang, opt, and/or jlm-opt.

Using the j1lm-opt binary directly on any LLVM IR file made
with LLVM 18, and dumping analysis runtime and/or precision
metrics.

Details can be found in the README . md file.

PIP has

ACKNOWLEDGMENTS

partly been developed and evaluated on the

IDUN/EPIC [48] computing cluster at the Norwegian University
of Science and Technology.

[1]

[2

—

[3]

[4

=

[5]

[6]

[7]

[8]

REFERENCES

R. Surendran, R. Barik, J. Zhao, and V. Sarkar, “Inter-iteration scalar
replacement using array SSA form,” in Proceedings of the International
Conference on Compiler Construction, A. Cohen, Ed., 2014, pp. 40-60.
[Online]. Available: https://doi.org/10.1007/978-3-642-54807-9_3

K. Chitre, P. Kedia, and R. Purandare, “The road not taken: exploring
alias analysis based optimizations missed by the compiler,” Proceedings
of the ACM on Programming Languages, vol. 6, p. 153:786-153:810,
Oct. 2022. [Online]. Available: https://doi.org/10.1145/3563316

R. Karrenberg and S. Hack, “Whole-function vectorization,” in
Proceedings of the International Symposium on Code Generation
and Optimization, Apr. 2011, p. 141-150. [Online]. Available:
https://doi.org/10.5555/2190025.2190061

C. Lattner, A. Lenarth, and V. Adve, “Making context-sensitive points-to
analysis with heap cloning practical for the real world,” in Proceedings
of the ACM SIGPLAN Conference on Programming Language Design
and Implementation, Jun. 2007, pp. 278-289. [Online]. Available:
https://doi.org/10.1145/1250734.1250766

W. Landi, “Undecidability of static analysis,” ACM Lett. Program.
Lang. Syst., vol. 1, p. 323-337, Dec. 1992. [Online]. Available:
https://doi.org/10.1145/161494.161501

Y. Lei and Y. Sui, “Fast and precise handling of positive weight
cycles for field-sensitive pointer analysis,” in SAS, Oct. 2019, p. 27-47.
[Online]. Available: https://doi.org/10.1007/978-3-030-32304-2_3

S. Ye, Y. Sui, and J. Xue, “Region-based selective flow-sensitive pointer
analysis,” in SAS, M. Miiller-Olm and H. Seidl, Eds., 2014, pp. 319-336.
[Online]. Available: https://doi.org/10.1007/978-3-319-10936-7_20

Y. Sui, Y. Li, and J. Xue, “Query-directed adaptive heap cloning for
optimizing compilers,” in Proceedings of the International Symposium
on Code Generation and Optimization, Feb. 2013, pp. 1-11. [Online].
Available: https://doi.org/10.1109/CG0O.2013.6494978

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

546

R. Nasre and R. Govindarajan, “Prioritizing constraint evaluation
for efficient points-to analysis,” in Proceedings of the International
Symposium on Code Generation and Optimization, Apr. 2011, pp.
267-276. [Online]. Available: https://doi.org/10.1109/CGO.2011.5764694
H. Yu, J. Xue, W. Huo, X. Feng, and Z. Zhang, “Level by level:
making flow- and context-sensitive pointer analysis scalable for millions
of lines of code,” in Proceedings of the International Symposium on
Code Generation and Optimization, Apr. 2010, p. 218-229. [Online].
Available: https://doi.org/10.1145/1772954.1772985

F. M. Q. Pereira and D. Berlin, “Wave propagation and deep propagation
for pointer analysis,” in Proceedings of the International Symposium on
Code Generation and Optimization, Mar. 2009, pp. 126-135. [Online].
Available: https://doi.org/10.1109/CG0.2009.9

J. Zhu, “Towards scalable flow and context sensitive pointer
analysis,” in Proceedings of the ACM/IEEE Design Automation
Conference, Jun. 2005, pp. 831-836. [Online]. Available: https:
//doi.org/10.1109/DAC.2005.193930

M. Hind, “Pointer analysis: haven’t we solved this problem yet?” in
Proceedings of the ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering, Jun. 2001, p. 54-61.
[Online]. Available: https://doi.org/10.1145/379605.379665

D. Pearce, P. Kelly, and C. Hankin, “Online cycle detection
and difference propagation for pointer analysis,” in Proceedings
of the IEEE International Conference on Source Code Analysis
and Manipulation, Sep. 2003, pp. 3-12. [Online]. Available:
https://doi.org/10.1109/SCAM.2003.1238026

B. Steensgaard, ‘Points-to analysis in almost linear time,” in
Proceedings of the ACM SIGPLAN Symposium on Principles of
Programming Languages, Jan. 1996, p. 32-41. [Online]. Available:
https://doi.org/10.1145/237721.237727

B. Hardekopf and C. Lin, “The ant and the grasshopper: Fast and
accurate pointer analysis for millions of lines of code,” in Proceedings
of the ACM SIGPLAN Conference on Programming Language Design
and Implementation, Jun. 2007, pp. 290-299. [Online]. Available:
https://doi.org/10.1145/1250734.1250767

M. Barbar, Y. Sui, and S. Chen, “Object versioning for flow-sensitive
pointer analysis,” in Proceedings of the International Symposium on
Code Generation and Optimization, Feb. 2021, pp. 222-235. [Online].
Available: https://doi.org/10.1109/CG0O51591.2021.9370334

M. Barbar and Y. Sui, “Compacting points-to sets through
object clustering,” Proceedings of the ACM on Programming
Languages, vol. 5, p. 159:1-159:27, Oct. 2021. [Online]. Available:
https://doi.org/10.1145/3485547

B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhotdk, J. N.
Amaral, B.-Y. E. Chang, S. Z. Guyer, U. P. Khedker, A. Mgller,
and D. Vardoulakis, “In defense of soundiness: a manifesto,”
Communications of the ACM, vol. 58, p. 44—46, Jan. 2015. [Online].
Available: https://doi.org/10.1145/2644805

L. O. Andersen, “Program analysis and specialization for the C program-
ming language,” Ph.D. dissertation, DIKU, University of Copenhagen,
1994.

ISO/IEC JTC1/SC22, “Programming languages - C - a provenance-aware
memory object model for C,” ISO/IEC, Technical Specification
6010:2025, May 2025. [Online]. Available: https://webstore.iec.ch/en/
publication/107524

Standard Performance Evaluation Corporation, “SPEC CPU2017
benchmark suite,” 2017. [Online]. Available: http://www.specbench.org/
cpu2017/

A. Rountev and S. Chandra, “Off-line variable substitution for scaling
points-to analysis,” in Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, May 2000, p.
47-56. [Online]. Available: https://doi.org/10.1145/349299.349310

D. J. Pearce, P. H. Kelly, and C. Hankin, “Online cycle detection
and difference propagation: Applications to pointer analysis,” Software
Quality Journal, vol. 12, pp. 311-337, Dec. 2004. [Online]. Available:
https://doi.org/10.1023/B:SQJ0.0000039791.93071.a2

——, “Efficient field-sensitive pointer analysis of C,” ACM Transactions
on Programming Languages and Systems, vol. 30, p. 4—es, Nov. 2007.
[Online]. Available: https://doi.org/10.1145/1290520.1290524

J. S. Foster, M. Fahndrich, and A. Aiken, “Flow-insensitive points-to
analysis with term and set constraints,” Tech. Rep., Jul. 1997.

C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International

https://doi.org/10.1007/978-3-642-54807-9_3
https://doi.org/10.1145/3563316
https://doi.org/10.5555/2190025.2190061
https://doi.org/10.1145/1250734.1250766
https://doi.org/10.1145/161494.161501
https://doi.org/10.1007/978-3-030-32304-2_3
https://doi.org/10.1007/978-3-319-10936-7_20
https://doi.org/10.1109/CGO.2013.6494978
https://doi.org/10.1109/CGO.2011.5764694
https://doi.org/10.1145/1772954.1772985
https://doi.org/10.1109/CGO.2009.9
https://doi.org/10.1109/DAC.2005.193930
https://doi.org/10.1109/DAC.2005.193930
https://doi.org/10.1145/379605.379665
https://doi.org/10.1109/SCAM.2003.1238026
https://doi.org/10.1145/237721.237727
https://doi.org/10.1145/1250734.1250767
https://doi.org/10.1109/CGO51591.2021.9370334
https://doi.org/10.1145/3485547
https://doi.org/10.1145/2644805
https://webstore.iec.ch/en/publication/107524
https://webstore.iec.ch/en/publication/107524
http://www.specbench.org/cpu2017/
http://www.specbench.org/cpu2017/
https://doi.org/10.1145/349299.349310
https://doi.org/10.1023/B:SQJO.0000039791.93071.a2
https://doi.org/10.1145/1290520.1290524

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

Symposium on Code Generation and Optimization, Mar. 2004, pp.
75-86. [Online]. Available: https://doi.org/10.1109/CG0.2004.1281665
N. Heintze and O. Tardieu, “Ultra-fast aliasing analysis using
CLA: a million lines of C code in a second,” ACM SIGPLAN
Notices, vol. 36, p. 254-263, May 2001. [Online]. Available:
https://doi.org/10.1145/381694.378855

M. Fihndrich, J. S. Foster, Z. Su, and A. Aiken, “Partial online
cycle elimination in inclusion constraint graphs,” in Proceedings
of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, Jun. 1998, p. 85-96. [Online]. Available:
https://doi.org/10.1145/277650.277667

B. Hardekopf and C. Lin, “Exploiting pointer and location
equivalence to optimize pointer analysis,” in Static Analysis, H. R.
Nielson and G. Filé, Eds., 2007, pp. 265-280. [Online]. Available:
https://doi.org/10.1007/978-3-540-74061-2_17

ISO/IEC JTC1/SC22, “Information technology — programming languages
— C,” ISO/IEC, International Standard 9899:2024, 2024.

C. D. Feather, “Defect report #260,” Sep. 2004. [Online]. Available:
https://www.open-std.org/jtc1/sc22/wgl4/www/docs/dr_260.htm

K. Memarian, V. B. F. Gomes, B. Davis, S. Kell, A. Richardson,
R. N. M. Watson, and P. Sewell, “Exploring C semantics and
pointer provenance,” Proceedings of the ACM SIGPLAN Symposium on
Principles of Programming Languages, vol. 3, p. 67:1-67:32, Jan. 2019.
[Online]. Available: https://doi.org/10.1145/3290380

J. Lee, C.-K. Hur, R. Jung, Z. Liu, J. Regehr, and N. P.
Lopes, “Reconciling high-level optimizations and low-level code
in LLVM,” Proceedings of the ACM on Programming Languages,
vol. 2, p. 125:1-125:28, Oct. 2018. [Online]. Available: https:
//doi.org/10.1145/3276495

J. Gustedt, P. Sewell, K. Memarian, V. B. F. Gomes, and M. Uecker, “A
provenance-aware memory object model for C,” ISO/IEC, Draft Technical
Specification N2676, Mar. 2021.

“JLM: A research compiler based on the RVSDG IR,” Apr. 2024.
[Online]. Available: https://github.com/phate/jlm

N. Reissmann, J. C. Meyer, H. Bahmann, and M. Sjilander, “RVSDG:
An intermediate representation for optimizing compilers,” ACM
Transactions on Embedded Computing Systems, vol. 19, pp. 49:1-49:28,
Dec. 2020. [Online]. Available: https://doi.org/10.1145/3391902

R. E. Tarjan, Disjoint Sets. Society for Industrial and Applied
Mathematics, Jan. 1983. [Online]. Available: https://doi.org/10.1137/1.
9781611970265.ch2

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

547

V. Nagaraj and R. Govindarajan, “Approximating flow-sensitive pointer
analysis using frequent itemset mining,” in Proceedings of the
International Symposium on Code Generation and Optimization, Feb.
2015, p. 225-234. [Online]. Available: https://doi.org/10.1109/CGO.
2015.7054202

M. Thakur and V. K. Nandivada, “PYE: A framework for precise-yet-
efficient just-in-time analyses for Java programs,” ACM Transactions on
Programming Languages and Systems, vol. 41, p. 16:1-16:37, Jul. 2019.
[Online]. Available: https://doi.org/10.1145/3337794

A. Le, O. Lhotdk, and L. Hendren, “Using inter-procedural side-effect
information in JIT optimizations,” in Proceedings of the International
Conference on Compiler Construction, R. Bodik, Ed., 2005, pp. 287-304.
[Online]. Available: https://doi.org/10.1007/11406921_22

S. Halalingaiah, V. Sundaresan, D. Maier, and V. K. Nandivada, “The
ART of sharing points-to analysis: Reusing points-to analysis results
safely and efficiently,” Proceedings of the ACM on Programming
Languages, vol. 8, p. 363:2606-363:2632, Oct. 2024. [Online]. Available:
https://doi.org/10.1145/3689803

A. Anand, S. Adithya, S. Rustagi, P. Seth, V. Sundaresan, D. Maier,
V. K. Nandivada, and M. Thakur, “Optimistic stack allocation and
dynamic heapification for managed runtimes,” Proceedings of the ACM
on Programming Languages, vol. 8, p. 159:296-159:319, Jun. 2024.
[Online]. Available: https://doi.org/10.1145/3656389

A. Rountev and B. G. Ryder, “Points-to and side-effect analyses for
programs built with precompiled libraries,” in Proceedings of the
International Conference on Compiler Construction, Apr. 2001, pp.
20-36. [Online]. Available: https://doi.org/10.1007/3-540-45306-7_3
A. Rountev, S. Kagan, and T. Marlowe, “Interprocedural dataflow analysis
in the presence of large libraries,” in Proceedings of the International
Conference on Compiler Construction, A. Mycroft and A. Zeller, Eds.,
2006, pp. 2-16. [Online]. Available: https://doi.org/10.1007/11688839_2
Y. Smaragdakis and G. Kastrinis, “Defensive points-to analysis: Effective
soundness via laziness,” in Proceedings of the European Conference on
Object-Oriented Programming, T. Millstein, Ed., 2018, p. 23:1-23:28.
[Online]. Available: https://doi.org/10.4230/LIPIcs.ECOOP.2018.23

H. R. Krogstie, “PIP: Making andersen’s points-to analysis sound and
practical for incomplete ¢ programs (artifact),” Aug. 2025. [Online].
Available: https://doi.org/10.5281/zenodo.16900791

M. Sjilander, M. Jahre, G. Tufte, and N. Reissmann, “EPIC: An energy-
efficient, high-performance GPGPU computing research infrastructure,”
Feb. 2022. [Online]. Available: http://arxiv.org/abs/1912.05848

https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/381694.378855
https://doi.org/10.1145/277650.277667
https://doi.org/10.1007/978-3-540-74061-2_17
https://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_260.htm
https://doi.org/10.1145/3290380
https://doi.org/10.1145/3276495
https://doi.org/10.1145/3276495
https://github.com/phate/jlm
https://doi.org/10.1145/3391902
https://doi.org/10.1137/1.9781611970265.ch2
https://doi.org/10.1137/1.9781611970265.ch2
https://doi.org/10.1109/CGO.2015.7054202
https://doi.org/10.1109/CGO.2015.7054202
https://doi.org/10.1145/3337794
https://doi.org/10.1007/11406921_22
https://doi.org/10.1145/3689803
https://doi.org/10.1145/3656389
https://doi.org/10.1007/3-540-45306-7_3
https://doi.org/10.1007/11688839_2
https://doi.org/10.4230/LIPIcs.ECOOP.2018.23
https://doi.org/10.5281/zenodo.16900791
http://arxiv.org/abs/1912.05848

	Introduction
	Background
	Building Constraint Sets
	Solving Constraints
	Worklist Solver
	Cycle Detection
	Pointer Provenance

	Handling Incomplete Programs
	Tracking Externally Accessible Locations and Pointers
	The Node
	Pointer-Integer Conversions and Pointer Smuggling
	Representing implicitly (IP)

	Prefer Implicit Pointees (PIP)
	Methodology
	Analysis Configurations
	Implementation Details

	Results
	Precision
	Solver Runtime
	Solver Scalability

	Related Work
	Conclusion
	Data-Availability Statement
	Appendix A: Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	Installation
	Experiment workflow
	Evaluation and expected result
	Experiment customization

	References

