Exposed Datapath for Efficient Computing

Magnus Bjork
John Hughes Kjell Jeppson

Magnus Sjdlander
Jonas Karlsson

Per Larsson-Edefors

Martin Thuresson
Mary Sheeran Per Stenstrom

Lars Svensson

Chalmers University of Technology

Abstract— We introduce FlexCore, which is the first exemplar
of a processor based on the FlexSoC processor paradigm. The
FlexCore utilizes an exposed datapath for increased performance.
Manually scheduled micro-benchmarks yield a performance
boost of up to a factor of two over a traditional five-stage pipeline
with the same functional units as the FlexCore. The compiler
is always capable of scheduling the instructions of a general-
purpose application onto the FlexCore on par with a traditional
GPP in terms of cycle count.

The flexible interconnect allows the FlexCore datapath to be
dynamically reconfigured as a consequence of code generation.
Additionally, specialized functional units may be introduced and
utilized within the same architecture and compilation framework.

The exposed datapath requires a wide control word. The
conducted evaluation confirms that this increases the instruc-
tion bandwidth and memory footprint. This calls for efficient
instruction decoding as proposed in the FlexSoC paradigm.

I. INTRODUCTION

Cost- and performance-sensitive application areas, such as
cellular phones and other battery-powered multimedia devices,
are not well served by present-day general-purpose computing
platforms. To meet user expectations of features and battery
capacity, designers instead resort to highly heterogeneous sys-
tems where a collection of specialized hardware accelerators
(built for encryption, image and video coding, audio playback,
etc) are controlled by an embedded microprocessor, such as an
ARM core. For cost reasons, several accelerators will typically
be colocated with the microprocessor on a single System-on-
Chip (SoC). The SoC then constitutes a highly heterogeneous
computing system, tuned for a set of specialized tasks.

The present practice has drawbacks. Tasks outside the set
originally intended may not benefit from the computing capac-
ity available: computing resources hidden inside an accelerator
may be difficult or impossible to use in ways other than those
considered by the accelerator designer. Even when possible,
the software constructs necessary to access a “hidden” hard-
ware block bear little resemblance to ordinary code.

For ease of software development and maintainability, a
uniform hardware/software interface, similar to those offered
by general-purpose processors (GPPs), would be highly de-
sirable; but present-day GPPs cannot compete with the het-
erogeneous SoC style in terms of performance at a given
power level. Merging the accelerator datapath elements into
the GPP infrastructure would be possible in principle, but a
very wide instruction word would be required to make fine-
grained control possible. Moreover, unlike in a conventional
VLIW machine, most of the specialized datapath elements

would be idle at any given moment, so instruction bandwidth
and memory footprint would be wasted.

In our approach, called the FlexSoC scheme [1], we address
these problems by moving away from the traditional GPP
instruction set architecture (ISA) and use a very wide control
word. This allows us to control the functional units in the
datapath at a much more fine grain level. Other important dif-
ferences between our approach and the standard GPP-like ISA
is that each control word, or Native-ISA (N-ISA), controls the
datapath in the current cycle only and that forwarding needs to
be done statically. Previous work on exposed control using co-
design has shown significant performance improvements [2].

AS-ISA2
AS-ISA2 §5
AS-ISA2 2 E
AS-ISA2 a=

Instruction
Cache

]
ivv{vvvi
P

AS-ISA instruction decoding into N-ISA instructions

Datapath

Fig. 1.

Intuitively, both the instruction bandwidth as well as the
static code size will be negatively affected by the wide control
work. Therefore, in our FlexSoC scheme, we introduce an
architecture with a programmable instruction decoder. This
decoder allows the compiler to use a compressed Application-
Specific ISA (AS-ISA) for each application, or set of ap-
plications, to be executed. Applications are stored as AS-
ISA instructions which are expanded on the fly to N-ISA
instructions when fetched from the program memory. Figure 1
illustrates this scheme.

In this paper, we introduce one exemplar of the FlexSoC
paradigm, dubbed the FlexCore [3]. The FlexCore is used to
evaluate datapath utilization and for investigating the demands
on the reconfigurable instruction decoder. Our results show
that the performance increase indeed comes at a cost of
increased instruction bandwidth and larger static code size.

II. THE BASELINE FLEXCORE ARCHITECTURE

To offer the full programmability of a GPP, we have decided
to include all the functional units necessary to emulate a full-
featured processor in our baseline architecture. Application
studies in our field of interest, in particular comparisons [4]
of two audio compression standards (MP3 and Ogg Vorbis),
have convinced us that full GPP functionality is necessary for
flexibility. We have opted to use a traditional, single-issue, five-
stage processor similar to the Hennessy-Patterson 32-bit DLX
and MIPS R2000 as a pattern [5]. A five-stage processor is
not a high-performance design, but in FlexSoC, our ambition
is to provide application performance mainly through the use
of specialized accelerators rather than through conventional
methods. Thus, our core is designed to be flexible and grad-
ually extensible, with accelerators according to application
requirements.

The datapath is fully exposed and is controlled through
the 91 bit wide N-ISA control word (see Figure 2). The
baseline FlexCore consists of four functional units: register
file, arithmetic logic unit (ALU), load/store unit (LS Unit),
and a program control unit (PC Unit), with all units connected
to a flexible, fully connected interconnect. To allow for GPP
functionality, each functional unit output port is connected
to a data register. These act as pipeline registers in the
various pipeline configurations that can be assembled using
the interconnect. Thus, it is easy to create different pipelines
by routing a result from one functional unit to the next.

To allow instructions to be scheduled on the FlexCore in the
same way as on a conventional five-stage pipeline, two extra
data registers (RegA and RegB) have been included. The two
data registers are used in the execute and load/store stage and
allow data to bypass the ALU and LS unit.

‘ Control ‘
L[] ‘ [T & D3 1
= > b v 3 L
=398 c S g 32 3
2m> S =% o » 3
5§94+ v F O § ¢
z vvvy ¥] v v
3 .
g Reglster ALU LS_ PC_
3 File Unit Unit
Q
=t ' NI
Q
ﬁ kY kY z
o o o o Q. o
g8 4
‘ Interconnect ‘
Fig. 2. Tllustration of a baseline FlexCore. Note that each DATA Reg also

has an enable signal not shown in the figure.

The baseline FlexCore can act as a GPP since it can
emulate a conventional pipeline and run instructions in the
same way'. The FlexCore architecture also allows for high
resource utilization due to the flexibility in scheduling, thanks
to the fine-grained N-ISA control word.

'Excluding support for floating point operations and multiplications.

A. N-ISA: Exposed Datapath

As described in Section I, the datapath of a FlexSoC pro-
cessor can be precisely controlled through the N-ISA control
word. The N-ISA depends heavily on the architecture and
its functional units. The N-ISA for the baseline FlexCore
architecture is shown in Figure 3. Starting from the least
significant bit, the control word consists of bits that control the
interconnect, the program counter unit (which also includes the
32-bit immediate value), the two data buffers, the load/store
unit, the ALU, and finally the register bank. Most of the
bits are very straightforward to determine from the expected
functionality of the functional unit. For example, the bits
controlling the register file contain the fields for which two
registers to read, which register to write, a write enable signal,
and two stall signals for each read port data register’>. The
PC unit handles the immediate value, and the ImmSel signal
selects if the value emitted from the PC unit should be the
current Immediate value, or the address of the next instruction
(which is used in jump-and-link-like instructions).

The N-ISA includes the bits controlling the interconnect.
Since each output can be associated to any input in every
cycle, the number of bits, n, needed to control an N-input,
M -output interconnect is n = N - [log,(M)].

[Interconnect [PC [D[LS | A [Register]

Fig. 3. FlexCore N-ISA control word. The different fields are: Interconnect
(24 bits), PC (37 bits, of which 32 bits are immediate), D (Data buffers, 2
bits), LS (Load/Store, 5 bits), A (ALU, 5 bits), and Register (18 bits). The
total length is 91 bits.

In each cycle, the controller outputs an N-ISA word, which
controls all units in the datapath as well as the interconnect.
The exposed-datapath approach differs from the traditional
pipelined control-word found in general-purpose processors
and digital-signal processors, where one control word (corre-
sponding to one instruction) contains information about all the
pipeline stages, for this and consecutive cycles. In a space/time
diagram, the GPP creates a diagonal control word, while the
N-ISA gives a horizontal control word.

As can be seen in Figure 3, the N-ISA word consists of
91 bits. Compared to a traditional 32-bit GPP, the FlexCore
requires an instruction bandwidth that is almost three times
as large in order to keep the datapath busy. The N-ISA is
clearly not an efficient representation for storage of the pro-
gram. Therefore, FlexSoC assumes a reconfigurable instruc-
tion decoder/expander in the hardware/software interface. Our
results show that both the static code size and the instruction
bandwidth must be addressed using the proposed scheme.

The goal to give the compiler complete control of the
hardware has the drawback that binary compatibility between
processors with different datapath architectures is lost. With a
reconfigurable instruction decoder, as proposed in the FlexSoC
scheme [1], it may however be possible to reuse the same AS-
ISA for different hardware configurations, but that is a topic
for future research and thus not addressed here.

2These are used to stall the datapath i.e. on a data cache miss.

In Section IV, we show performance gains from using an
exposed datapath and a flexible interconnect with the same
functional units as a traditional five-stage processor.

B. Extensions to the Baseline FlexCore

The FlexCore architecture can be extended with application
specific accelerator units, simply by adding more ports to the
interconnect and extending the N-ISA control word to include
control signals for the new units. Since different units are
treated equally, we hope to avoid complex ad-hoc solutions
usually found in irregular interconnects. For instance, for each
unit added to a normal pipeline, the forwarding network with
control logic has to be modified. A conventional fixed pipeline
depth also makes it cumbersome to add functional units and
utilize them efficiently: either the new unit is put in the execute
stage and can thereby only be used if the ALU is not used; or
a new pipeline stage is added which changes the architecture
considerably; or the unit can be added as a coprocessor, which
causes communication overheads.

A fully connected crossbar guarantees that the interconnect
will not restrict the scheduling of operations on the functional
units. This motivates its use in the explorative phase in the pro-
cessor design. As seen in Section IV, the full connectivity may
not be needed for a given application domain; this provides an
opportunity to reduce the area and power requirements of the
processor, once a suitable collection of functional units has
been determined.

III. COMPILING FOR FLEXCORE

The flexibility of FlexSoC architectures enables numerous
compilation strategies. Given the ability of FlexCore to emu-
late a conventional processor, we chose as our initial approach
to translate conventional GPP-like code into N-ISA code. This
work has shown that the FlexCore can indeed emulate a
conventional five-stage processor in real time: on the examples
we have tried out, the number of cycles required for running
the same program on a DLX and on the FlexCore has differed
by less than 3%.

The translation of single GPP instructions to N-ISA code
is straightforward. We use the same pipeline structure as in
the DLX, but the instruction fetch stage is implicitly handled
by the FlexCore control unit. In other words, each instruction
spans four cycles. The first cycle uses the immediate port and
the read ports of the register bank. The second cycle uses the
ALU and one data register. The third cycle uses the load/store
unit and the other data register. Finally, the fourth cycle uses
the write port of the register bank. Sequences of such in-
structions are merged using the static optimization techniques
described below, to achieve pipelining and forwarding.

The technique of executing GPP programs on the FlexCore
is useful for showing that it is at least as powerful as the DLX
processor, and can be configured to work as one. Obviously,
this is not the best way to exploit the architecture. Even though
the interconnect allows communication between any two units,
DLX programs use only the paths corresponding to those
found in the DLX processor. We therefore aim to compile high

level code down to N-ISA along the lines of other compilation
methods for general datapaths, such as [6]. This enables the
pipeline length and structure to be changed as often as needed,
and even allows programs to use the functional units in any
order. Currently, profiling allows the programmer to manually
schedule performance-critical regions.

A. Instruction-Level Static Code Optimization

Translating DLX assembly code into N-ISA code yields
a number of N-ISA instruction sequences that should be
scheduled as tightly as possible, overlapping each other as
allowed by resource conflicts and data dependencies. Resource
conflicts are not an issue in the case of DLX code, thanks to
its pipeline structure. Data dependencies are more important,
since consecutive operations often use the same register.
When one operation uses the contents of a register that is
updated by the previous operation, several cycles can often
be saved by forwarding: taking the value directly from the
functional unit that produces it, rather than waiting for it to be
written to the register bank first. Another simple optimization
is to change the register read port, if two registers would
otherwise be read by the same port in the same cycle.
Pipelined processors usually do these optimizations at run-
time. However, due to the exposed control word of the
FlexCore, we can and must do them statically. The basic
operation is to compose two sequences of N-ISA instructions
sequentially, with as much overlap as possible. This is done
by annotating each instruction with information about what
resources that are used, and the status of all registers. Each
register can have status available, unavailable, or rerouted(p),
where p is the name of an output port of a functional unit.
Normally, registers are marked as available, which means that
their value can be read from the register bank. A register is
unavailable when a new value for the register is currently
being computed and is not yet available. When the value
is available but not yet written to the register bank, the
rerouted(p)-annotation tells the compiler where the value can
be found. In such a case, the register read is omitted, and the
value is fetched from the port p instead of the register port.
Techniques such as these are not restricted to rescheduled
conventional-pipeline programs, but can be used for any N-
ISA code. They help determine whether any two annotated
N-ISA sequences are composable with a fixed overlap. To
find out the maximal possible overlap, we begin by composing
them without overlap, then with one cycle overlap, thereafter
with two cycles overlap, and so on until we fail. It may be
possible to continue even further, but then we must perform
a more careful analysis to make sure that no write order
conflict occurs. However, we do not expect such aggressive
optimizations to have a significant efficiency impact.

B. Basic-Block Level Static Code Optimization

Basic blocks should also be scheduled as tightly as possible.
We model basic blocks as sequences of N-ISA instructions,
ending with a branch, a static jump, or a dynamic jump. A
branch has a condition (such as the zero flag of the ALU is

set) and two addresses; a static jump has one address; and
a dynamic jump has no information in the N-ISA word (the
destination address is passed through the interconnect). At the
end of the block, there may be a tail, which is another sequence
of N-ISA instructions. These instructions are merged at run-
time with the instructions of the next basic block by bitwise
or operations. The tail is used to model configurations where
each AS-ISA instruction may span over several cycles.

How soon the next block can start to execute after a jump
can be calculated using the instruction level optimization
methods for the tail of the first block and the code of the
second block. To do this, all possible paths in the program
must be calculated. This is easy to do for branches and static
jumps. The possible destinations of dynamic jump operations
can be found out by keeping track of all code addresses that
are stored in data registers (i.e., all jal and jalr instructions).
The delay of branches and static jumps can be stored in the
block, while the delay of dynamic jumps is better represented
as a number of nops in the successor block (assuming that
only one function can return to a specific address, while a
specific function can return to several different addresses).

IV. EXPERIMENTS AND RESULTS

The initial benchmarks for FlexCore are taken from the
embedded domain. The first benchmark is the matrix operation
sum of absolute differences (SAD), a common kernel in many
media applications such as MPEG-2 video encoding. The
benchmark takes two 3x3 matrices and returns the sum of the
absolute difference between each of the corresponding matrix
elements. In the other benchmark, matrix convolution, a 3x3
filter matrix is applied on each pixel of a 4x4 image. The
image also has a border consisting of zeros around it in order
to handle the pixels on the edges correctly. Equation 1 shows
the operation on each pixel, where F' is the filter image and
X the original image. The computed result is rounded down
to 255 or up to O if necessary.

2 2

Yie,y =D Y Fli,j]- X[z+i—1Ly+j—1 (1)
i=0 j=0

In order to compare the FlexCore against a 5-stage GPP, we
have used WINDLX?, a simulator for the DLX architecture.
To distinguish between the performance gains achieved by
an exposed datapath and the flexible interconnect, a FlexCore
with only the interconnects present in the GPP pipeline has
also been simulated; it is identified as “Exposed GPP” in the
tables. Each benchmark has been manually optimized for the
three architectures and both the static and dynamic instruction
count have been analyzed.

For the convolution benchmark, we have added a multiplier
to the FlexCore architecture. To make the comparison to the
GPP-implementation, we have used the same 4-cycle delay as
in WINDLX in our architecture.

3WINDLX: Developed by Herbert Griinbacher, University of Technology
Vienna, Inst. fiir Technische Informatik

In the FlexCore datapath, all functional units, including a
multiplier, can work directly with data in the register file. This
is not true for the original DLX, which has special purpose
multiplication registers and associated move instructions to
move data to and from these registers. The WINDLX sim-
ulator does not model this special purpose register for integer
multiplication and will have better performance compared to
an exact model. This difference works in favor for the GPP
and our result might be a bit more pessimistic because of this.

A. Performance Evaluation

The metrics used in the experiments are static code size and
dynamic instruction count. The results are presented in Table I.
For both benchmarks, the FlexCore architecture managed to
perform the same task using only half the cycles of the GPP.
The speedup of a factor of two is clearly achieved by the more
efficient use of the available functional units. The exposed data
path together with the flexible interconnect yields a substantial
performance boost without resorting to codesign or adding
dedicated accelerators.

TABLE I
SIMULATION RESULTS FOR THE BENCHMARKS SAD AND CONVOLUTION.

SAD Convolution
Code Size Cycle Count | Code Size Cycle Count
GPP 17 inst 152 (100%) 40 inst 2735 (100%)
Exposed GPP 20 inst 85 (56%) 68 inst 1774 (65%)
FlexCore 18 inst 76 (50%) 49 inst 1423 (52%)

The code size presented in Table I show that the FlexCore
programs are of the same size or slightly larger than their GPP
counterparts. This together with the fact that each FlexCore
instruction is almost three times larger than a GPP instruction
clearly shows that both the static code size and instruction
bandwidth need to be addressed.

As can be seen in Table I, a FlexCore with a fully in-
terconnected network achieves a speedup of 11% to 20%
compared to only utilizing an exposed datapath, as in the
Exposed GPP example. This is because several interconnect
paths not available in the GPP were used. Table II shows a
list of those paths. However, out of the 90 paths available
in the interconnect, only 12 were used for SAD, and 17 for
convolution. The interconnect is clearly underutilized for these
benchmarks.

TABLE I
NON-GPP INTERCONNECT PATHS USED IN FLEXCORE BENCHMARKS.

From To

Register bank Register bank

ALU Register bank
Immediate Register bank
Multiplier ALU
Register bank Load/Store
Load/Store Multiplier

In a GPP, all calculated values are written to the register
file. Nevertheless, all written values that are used in the next
instruction will be routed through the by-pass network; in

cases where the value is never again read from the register
file, the write is unnecessary. In the FlexCore architecture, a
compiler could potentially skip the generation of such writes,
as long as it can statically find such locations in the program.
In this particular case, the number of register writes was
reduced from 76 to 57 (by 25%) for the SAD benchmark
and from 1438 to 921 (by 36%) for the convolve benchmark
by manual scheduling of the instructions. This reduces the
contention of the register file as well as saves power®.

B. Implementation

To evaluate the performance in terms of delay, power,
and area, VHDL implementations have been created for the
different processors. Note that no control logic has been
implemented for the evaluated processors in our comparison.
The exposed GPP is a traditional GPP where the control logic
has been removed. Therefore, when disregarding control logic
and instruction fetch the exposed GPP and traditional GPP
are equivalent. The impact on performance by control logic
and instruction fetch for the different processors is addressed
within the FlexSoC project, however, it is not the topic of this
paper.

The VHDL has been synthesized (Synopsys Physical Com-
piler [7]) and placed and routed (Cadence NanoEncounter [8])
using a commercially available 0.13um technology. Timing
and power estimations (Synopsys PrimeTime [9] and Prime-
Power [10]) were done on the placed and routed netlists using
back-annotated capacitances. The power estimations are for
maximum clock frequency for each of the processors and
with PrimePowers default values for activities on the inputs.
Table IIT shows the result of timing and power estimations for
the baseline FlexCore, a FlexCore extended with a multiplier,
the exposed GPP and a traditional GPP. Both the GPP and
exposed GPP are equipped with a multiplier.

TABLE III
TIMING, POWER, AND AREA ESTIMATIONS.

[Timing (ns) Power (mW) Area (mm?)
GPP (MULT) 4.4 (100%) 35.70 (100%) 0.426 (100%)
Exposed (MULT) | 4.4 (100%) 35.70 (100%) 0.426 (100%)
FlexCore (MULT) | 5.5 (125%) 34.47 (97%) 0.444 (104%)
FlexCore 5.1 (116%) 34.39 (96%) 0.275 (65%)

The FlexCore implementations perform worse in terms of
delay in comparison to a GPP and exposed GPP pipeline. This
is most likely due to the more flexible interconnect that gives
a performance penalty. On the other hand, power and area are
competitive with that of a GPP and exposed GPP pipeline.

The FlexCore implementation shows more promising results
when considering execution time and energy dissipation for a
whole application. The Convolution benchmark shows com-
parable execution time and slightly lower energy dissipation
compared to the exposed GPP pipeline, Table IV. For the much
shorter SAD benchmark the full potential is not shown for the

It also complicates exception handling, which is however not the topic of
this paper.

FlexCore, since the difference in cycle-count is much smaller.
Compared to a traditional GPP the FlexCore has both an
improved execution time as well as lower energy dissipation.
This is due to the much fewer cycles needed to execute the
two benchmarks.

TABLE IV
EXECUTION TIME AND ENERGY DISSIPATION FOR SAD AND
CONVOLUTION.
SAD Convolution
Time (ns) Energy (nJ) Time (ns) Energy (nJ)
GPP 669 (100%) 23.88 (100%) | 12034 (100%) 430 (100%)
Exposed 374 (56%) 13.35 (56%) 7806 (65%) 279 (65%)
FlexCore | 418 (62%) 14.41 (60%) 7827 (65%) 270 (63%)

The longer delay of the FlexCore implementation can be
decreased by restricting the flexibillity of the interconnect. As
shown in the previous section, only a limited number of all
available paths are being utilized.

V. RELATED WORK

Reconfigurable architectures is an active area of research.
Dedicated hardware is becoming less attractive because of
huge initial costs, long time to market, and inability to adapt
to new and changing standards. Reconfigurable hardware is
a promising approach to address these problems, without
forsaking the performance of dedicated hardware. Hartenstein
has compiled a thorough survey of reconfigurable architec-
tures [11]. Many modes of reconfigurability have been pro-
posed: reconfigurable accelerators may be connected to a stan-
dard pipeline [12]; or reconfigurable tiles may be orchestrated
to solve given problems [13], [14]. In contrast, the FlexSoC
approach employs reconfigurability only in the instruction
decoding hardware, leaving the actual data processing to
highly efficient dedicated hardware.

The exposed datapath concept has recently been used in
the No Instruction Set Computer (NISC) [15], [2], [6] project,
where the control pipeline is removed and the controller emits
a wide instruction word each cycle. Co-design refinement of
hardware and software is used to reach the desired perfor-
mance. The reported speedups are comparable to those we
see for the FlexCore example. However, the static code size
of a NISC program is claimed to be comparable to that of
a GPP. While this might be true for a co-design approach
where common complex operations can be implemented with
few control bits, we have not seen the same results for the
FlexCore architecture. In FlexSoC, we rely on compression
and run-time expansion to solve the code size problem. In-
creased controllability of the datapath has been have also been
motivated by the reduction in hardware complexity, as in the
Transport Triggered Architecture [16].

Liang et al [17] propose an architecture based on a recon-
figurable interconnect and show good performance for some
domain-specific computations. It is, however, not clear how
the results translate to a wider domain of applications.

A common way to accelerate multimedia applications is to
add sub-word parallelism within the functional units (SIMD).

This technique is used both in modern general purpose com-
puters and specific media processors. For a 5-stage DLX
implementation, Nia and Fatemi report a speedup of more than
a factor of 3 with only minor growth in chip area [18]. The
approach is orthogonal to those proposed here and would seem
to make a fruitful addition to a FlexSoC core.

Similarly to FlexSoC, the FITS project [19], [20], [21] also
envisions the use of flexible instruction decoders. Application
profiling allows the selection of a 16-bit application-specific
ISA that gives the same performance as the 32-bit baseline
case. FlexSoC combines a similar application-specific ISA
approach with the performance gains offered by the exposed
datapath and the flexible interconnect.

The translation envisioned in the FlexSoC project is some-
what similar to microcode processing, where a complex ISA
is broken down into micro-operations that are executed on
the pipeline. The main purpose of microcode is to separate
the architecture from the implementation and the microcode
is usually derived from the already given ISA. In FlexSoC,
this constraint is relaxed and the AS-ISA can be created by
the compiler to fit the needs of the applications.

VI. CONCLUSION

The exposed pipeline of the FlexCore offers distinct perfor-
mance benefits when compared to a GPP with corresponding
datapath hardware. The flexible interconnect network further
improves performance, and also allows special-purpose dat-
apath elements to be integrated while maintaining a uniform
programming interface. With knowledge of the datapath struc-
ture, a compiler can realize these performance benefits. Ad-
ditionally, it is always possible to execute programs compiled
for the DLX at cycle-counts comparable to a standard DLX
implementation.

We have analyzed two media kernels and shown that the
FlexCore has a speedup of a factor of two in terms of cycle
count, compared to a traditional 5-stage GPP with the same
functional units. Using cycle times obtained from placed and
routed layouts, we show that this cycle count translates to a 35
to 38% total execution-time improvement. This performance
boost comes at a cost of both instruction bandwidth and static
code size. The FlexCore instructions are about three times as
wide as a standard GPP instruction. Since the number of static
instructions does not get improve for the FlexCore, the static
code size is also larger. This clearly motivates the FlexSoC
scheme of introducing a reconfigurable instruction decoder,
to reduce both the static code size as well as instruction
bandwidth.

Future work includes incorporating a reconfigurable instruc-
tion decoding framework in the FlexCore. Different compres-
sion schemes can be expected to be more or less suited to the
ISA transformations needed, and to carry different implemen-
tation costs. Configuration of the instruction decoder could
be a one-time event; but run-time, on-demand reconfiguration
offers intriguing possibilities, where several tasks, each with
a distinct AS-ISA, could be sharing the same hardware.

ACKNOWLEDGMENT

The FlexSoC project is sponsored by the Swedish Founda-
tion for Strategic Research.

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]
[9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

J. Hughes, K. Jeppson, P. Larsson-Edefors, M. Sheeran, P. Stenstrom,
and L. J. Svensson, “FlexSoC: Combining flexibility and efficiency in
SoC designs,” in Proceedings of the IEEE NorChip Conference, 2003.
M. Reshadi, B. Gorjiara, and D. Gajski, “Utilizing horizontal and vertical
parallelism with no-instruction-set compiler for custom datapaths,” in
International Conference on Computer Design (ICCD), October 2005.
M. Bjork, J. Hughes, K. Jeppson, J. Karlsson, P. Larsson-Edefors,
M. Sheeran, M. Sjélander, P. Stenstrom, L. Svensson, and M. Thuresson,
“FlexSoC technical report Q1 2006,” Computer Science and Engineer-
ing, Chalmers University of Technology, Tech. Rep. 2006-8, 2006.

J. Marts and T. Carlqvist, “A Hardware Audio Decoder Using Flexible
Datapaths,” MSc Thesis, Chalmers University of Technology, March
2006.

D. A. Patterson and J. L. Hennessy, Computer Organization & Design,
The Hardware/Software Interface, 2nd ed. Morgan Kaufman Publishers
Inc., 1998.

M. Reshadi and D. Gajski, “A cycle-accurate compilation algorithm
for custom pipelined datapaths,” in International Symposium on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), Septem-
ber 2005.

Physical Compiler User Guide Version W-2004.12.

Encounter User Guid Version 4.1.

PrimeTime X-2005.06 Synopsys Online Documentation.

PrimePower Manual Version W-2004.12.

R. Hartenstein, “A decade of reconfigurable computing: a visionary
retrospective,” in Proceedings of Design, Automation and Test in Europe,
2001, March 2001, pp. 642-649.

Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee, “CHIMAERA:
a high-performance architecture with a tightly-coupled reconfigurable
functional unit,” in ISCA ’00: Proceedings of the 27th annual interna-
tional symposium on Computer architecture. New York, NY, USA:
ACM Press, 2000, pp. 225-235.

M. B. T. et al., “Evaluation of the RAW microprocessor: An exposed-
wire-delay architecture for ILP and streams,” in ISCA ’04: Proceedings
of the 31st annual international symposium on Computer architecture.
Washington, DC, USA: IEEE Computer Society, 2004, p. 2.

K. S. et al.,, “TRIPS: A polymorphous architecture for exploiting ILP,
TLP, and DLP,” ACM Trans. Archit. Code Optim., vol. 1, no. 1, pp.
62-93, 2004.

B. Gorjiara, M. Reshadi, and D. Gajski, “Designing a custom architec-
ture for DCT using NISC design flow,” in ASP-DAC’06 Design Contest,
2006.

H. Corporaal, “Ttas: missing the ilp complexity wall,” J. Syst. Archit.,
vol. 45, no. 12-13, pp. 949-973, 1999.

X. Liang, A. Athalye, and S. Hong, “Dynamic coarse grain dataflow
reconfiguration technique for real-time systems design,” in The 2005
IEEE International Symposium on Circuits and Systems. 1EEE Com-
puter Society, May 2005, pp. 3511-3514.

E. Nia and O. Fatemi, “Multimedia extensions for DLX processor,” in
Proceedings of the 10th IEEE International Conference on Electronics,
Circuits and Systems, Dec 2003, pp. 1010 — 1013.

A. Cheng, G. Tyson, and T. Mudge, “FITS: framework-based
instruction-set tuning synthesis for embedded application specific pro-
cessors,” in DAC ’04: Proceedings of the 41st annual conference on
Design automation. ACM Press, 2004, pp. 920-923.

, “PowerFITS: Reduce dynamic and static i-cache power using
application specific instruction set synthesis,” in Performance Analysis
of Systems and Software, 2005. ISPASS 2005. IEEE International
Symposium on, 2005, pp. 32-41.

A. C. Cheng and G. S. Tyson, “High-quality ISA synthesis for low-
power cache designs in embedded microprocessors,” IBM J. Res. Dev.,
vol. 50, no. 2, pp. 299-309, 2006.

