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Abstract— In this paper Internet backbone traffic is classified
on transport layer according to network applications. Classifi-
cation is done by a set of heuristics inspired by two previous
articles and refined in order to better reflect a rough and highly
aggregated backbone environment. Obvious misclassified flows by
the existing two approaches are revealed and updated heuristics
are presented, excluding the revealed false positives, but including
missed P2P streams. The proposed set of heuristics is intended
to provide researchers and network operators with a relatively
simple and fast method to get insight into the type of data
carried by their links. A complete application classification can be
provided even for short ’snapshot’ traces, including identification
of attack and malicious traffic. The usefulness of the heuristics
is finally shown on a large dataset of backbone traffic, where in
the best case only 0.2% of the data is left unclassified. 1

I. INTRODUCTION

Reliable classification of Internet traffic based on network

applications is still an open research issue. However, network

operators need to know the type of traffic they are carrying,

amongst others in order to improve network design and provi-

sioning and to support QoS and security monitoring. Ongoing

measurements will furthermore reveal trends and changes in

the usage of network applications. A good example is the shift

in the early 2000’s, when P2P file sharing replaced HTTP as

the Internet’s ’killer application’, implying not only changes

in data volumes, but also in traffic properties.

Different approaches to classify network traffic exist. Tradi-

tionally, traffic was classified based on source and destination

port numbers. While this approach is very simple and does not

require any packet payload, it is highly unreliable in modern

networks. This is especially true for most P2P applications,

which are trying to disguise their traffic in order to evade

traffic filters and legal implications. It was shown that pure port

number analysis underestimates actual P2P traffic volumes by

factors of 2 to 3 [1].

A more reliable technique involves analysis of packet pay-

loads. This approach can potentially provide highly accurate

results given a complete set of payload signatures [2]. Beside

the high effort of keeping the set of signatures updated, this

method relies on network traces including packet data, which

is uncommon due to privacy and legal concerns. Furthermore

matching payload signatures on high-speed links is far from

trivial and poses high processing requirements.

1This work was supported by SUNET, the Swedish University Network

A more recent classification technique is based on statistical

properties of flows. A promising feature of these methods is

that they are neither relying on port numbers nor on packet

payload. However, the success of such ’statistical fingerprints’

highly depends on the accuracy of the training data used.

Ensuring accuracy and authenticity of the training sets is still

an open issue [3], especially for disguised P2P flows.

Finally, network data can be classified according to

connection patterns. Instead of looking at individual packets

or flows, sequences of flows to or from a specific endpoint

are matched with a set of predefined heuristics [4], [5]. These

heuristics typically don’t require packet payload and could

potentially even disregard port numbers.

We initially intended to classify Internet backbone data in

order to investigate the influence of P2P applications on traffic

properties. Consequently it was planned to apply an exist-

ing and verified classification technique. Since our available

datasets did not include packet payload and accurate training

data, payload signatures or statistical fingerprinting could not

be applied. Thus applying straight-forward connection pattern

heuristics was the obvious approach. In [4], Karagiannis

presents a set of two heuristics for transport layer identifi-

cation of P2P traffic, including seven rules for removing false

positives. The paper verifies that their method can identify

95% of P2P flows, with around 10% false positives compared

to a carefully carried out payload analysis on OC-48 backbone

data. Additionally, Perenyi [5] recently proposed an updated

set of six heuristics to identify and analyze P2P traffic, based

on very similar ideas like Karagiannis. These heuristics were

verified against traffic generated in a lab environment, yielding

a hit ratio for P2P traffic of over 99%, with less than 1% false

positives or unclassified P2P flows.

After applying the approaches of both Karagiannis and

Perenyi to our data, it turned out that their results differ sub-

stantially. Furthermore, obvious false positives were detected

in our data with both classification methods. As a result, we

propose a refined combination of the heuristics by Karagiannis

and Perenyi including some additions. The modifications were

necessary to make the classification suitable for relatively short

traces of a harsh Internet backbone environment, including

highly aggregated and diverse traffic with a substantial amount

of attacking and malicious traffic. Besides being based on

the verified heuristics of Karagiannis and Perenyi, the results



where further verified by manual inspection. Flows, which

are not classified as P2P traffic by all three applied sets of

heuristics are separately discussed regarding their most proba-

ble traffic class, thereby identifying obvious misclassification.

II. DATA DESCRIPTION

Our dataset was collected during 20 days in April 2006

on the OC192 backbone of the Swedish University Network

(SUNET). During this period, four traces of 20 minutes were

collected each day at identical times (2AM, 10AM, 2PM,

8PM), as described in [6] and [7]. After recording the packet

level traces on the 2x10 Gbit/s links, payload beyond transport

layer was removed and IP addresses were anonymized due to

privacy concerns. A per-flow analysis was conducted on the

resulting bidirectional traces, where flows are defined by the 5-

tuple of source and destination IP and port numbers as well as

transport protocol. TCP flows represent connections, and are

therefore further separated by SYN, FIN and RST packets.

UDP flows are separated by a timeout of 64 seconds. The 73

traces in the dataset sum up to 10.7 billion packets, containing

7.5 TB of data. We identified 81 Million TCP connections and

91 Million UDP flows, with the TCP connections carrying

97% of all data. The further analysis is dealing with TCP

connections only, even though the classification heuristics have

been successfully applied to UDP flows as well.

III. PROPOSED HEURISTICS

The set of heuristics proposed in this paper is strongly

inspired by the heuristics by Karagiannis [4] and Perenyi [5],

and will therefore be presented briefly only. The classification

is based on connection patterns, but in some cases also port

numbers are taken into account. Besides the rules for filtering

out P2P traffic (H1-H5), a number of heuristics are used

to remove false positives from flows suspected to be P2P

traffic (F1-F10). These ’false positive’ rules in turn can be

used to classify other types of traffic, as shown in section

V. In contrast to Perenyi’s approach, most of our proposed

heuristics (with exception of H5 and F10) are first applied

independently to all flows and are then prioritized. We apply

these heuristics to our dataset in 10 minute intervals, which

means that every interval is analyzed self-contained, without

memory of previous intervals. Even though such memory

could improve the accuracy of the results, our approach has

the advantage to allow operators to classify snapshots of

their traffic fast and in an ad hoc fashion. We will show that

even 10 minute intervals can provide satisfying results. The

proposed heuristics include a number of thresholds which

might be adjusted. For our data the thresholds used were

derived empirically through experiments on a number of

traces. In the following list of heuristics, (K) (Karagiannis) or

(P) (Perenyi) indicate by which previous method the heuristic

was inspired, while (J) (John) marks newly introduced rules.

H1: TCP/UDP IP Pairs:(K),(P). This rule exploits the fact

that many P2P applications use TCP for data transfer and UDP

for signaling traffic. Source and destination IP pairs, which

concurrently use TCP and UDP are therefore marked as P2P

hosts. All flows to and from these hosts are marked as potential

P2P flows. Concurrent here means usage of TCP and UDP

within the 10 minutes interval. Karagiannis identified some

non-P2P applications which show a similar behavior, such as

netbios, dns, ntp and irc (Table 3 in [4]). UDP flows from

these applications are excluded from this heuristic based on

their port-numbers.

H2: P2P Ports:(P). Even though many P2P applications

choose arbitrary ports for their communication, approx. one

third of all P2P traffic can still be identified by known P2P

destination port numbers [1]. Furthermore, it seems disad-

vantageous for non-P2P applications to deliberately use well

known P2P ports for their services, since traffic on these ports

is often blocked by traffic filters in some networks. Flows to

and from port numbers listed in Table 3 of [5], enriched with

additional P2P ports, are marked as potential P2P traffic.

H3: Port Usage:(P). In normal application, the operat-

ing system assigns ephemeral port numbers to source ports

when initiating connections. These numbers are often iterating

through a configured ephemeral port space. It is very unusual,

that the same port numbers are used within short time periods.

This however can be the case for P2P applications with fixed

ports assigned for signaling traffic or data transfer. If a source

port on a host is repeatedly used within 60 seconds, the host

is marked as P2P host, and all flows to and from this host are

marked as potential P2P flows.

H4: P2P IP/Port Pairs:(K). If listening ports on peers

in P2P networks are not well known in advance, they are

typically propagated to other peers by some kind of signaling

traffic (e.g. an overlay network). This means that each host

connecting to such a peer will connect to this agreed port

number, using a random, ephemeral source port. As noted by

Karagiannis, P2P peers usually maintain only one connection

to other peers, which means that each endpoint (IP,port) has

at least the same number of distinct IP addresses (#sIP) and

number of distinct ports (#sPort) connected to it. If #sPort-

#sIP<2 and #sIP>5, the host is considered as P2P host, and

all flows to and from this host are marked as potential P2P.

F1: Web IP/Port Pairs:(K). Web traffic on the other hand

typically uses multiple connections to one server. For this rea-

son hosts are marked as web-hosts, if the difference between

#sPort and #sIP connected to an endpoint (IP,port) is larger

than 10, the ratio between #sPort and #sIP is larger than two

and at least 10 different IPs are connected to this endpoint

(#sPort-#sIP>10 and #sPort/#sIP>2 and #sIP>10). All flows

with http port numbers (80, 443, 8080) to and from these

webhosts are then marked as web traffic.

F2: Web:(P). To further identify web traffic, we follow

Perenyi’s heuristic number 2, taking advantage of the fact that

web clients typically not only use multiple, but even parallel

connections to webservers. Hosts with parallel connections to

a http port are considered as webservers. All flows to and from

web servers on http ports are marked as web traffic.



F3: DNS:(K). Traditional services like dns sometimes use

equal source port and destination port numbers. As suggested

by Kargiannis, we mark endpoints (IP,port) as non-P2P, if it

includes flows with equal source- and destination port and port

numbers smaller than 501. All flows to and from this endpoint

are then marked as non-P2P traffic.

F4: Mail:(K). Hosts receiving traffic on mail ports (smtp,

pop, imap) and in the same analysis interval also initiate

connections to port 25 on other hosts are considered to be

mailservers. All flows to and from mailservers are marked as

mail traffic.

F5: Messenger:(K). Popular messenger and chat servers

(icq, yahoo, msn, jabber, irc) tend to have long uptimes

and rarely change IP addresses, especially when maintained

by commercial providers such as Microsoft and Yahoo. To

improve the accuracy of the results, in this heuristic we

therefore take advantage of the whole 20 day long dataset.

Hosts, connected to by at least 10 different IPs on well known

messenger ports within a period of at least 10 days, are marked

as messenger servers. All traffic to and from these hosts on

known messenger ports is classified as messenger traffic.

F6: Gaming:(J). Popular game servers (currently only the

most common online games Half-Life and World of Warcraft)

are identified in the same fashion as messenger servers. All

traffic to and from the game servers on well known gaming

ports is classified as gaming traffic.

F7: Ftp: (J). Ftp was not taken into account by Karagiannis,

while Perenyi implicitly included it as part of its ’well known

port’ rule. Identifying data transfer in passive ftp remains a

problem. Active ftp data transfer on the other hand can easily

be marked as ftp traffic identified by an initiating sourceport

number of 20, as used by ftp servers to actively serve their

requesting clients.

F8: non P2P Ports:(P). As noted by Perenyi, destination

ports are still suitable to identify traffic of some common

applications. Our set of well known non-P2P ports includes

netbios, dns, telnet, ssh, ftp, mail, rtp and bgp. All flows to

the listed destination ports are marked as non-P2P flows.

F9: Attacks:(J). This rule is probably the most significant

improvement to the original heuristics. While Perenyi does

not take malicious traffic into account at all, Karagiannis

rules out simple network scans as false positives. We first

identify suspicious pairs of source IPs and destination Ports

(AttackPairs). All flows with source IP and destination port

inside the list of AttackPairs are then marked as attacks.

AttackPairs are identified by three different cases:

a) Sweep: The ratio between number of destination IPs (#dIP)

and number of destination ports (#dPort) from a certain host

is greater than 30. This means that one host is connecting

to a lot of hosts with only a few different port numbers, as

typically the case when scanning IP ranges for vulnerabilities

on specific ports.

b) Scan: The ratio between #dIP and #dPort is less than 0.33

and #dIP is less than 5. This would be the case if one host

is scanning a small number of specific, dedicated targets on a

large number of different ports.

c) DoS: #dIP is less than 5, #dPort is less than 5 and the

average number of conn. per sec (conn/s) is greater than 6.

This behavior represents ’hammering’ attacks, where one host

is trying to overload a few targets (typically one) by opening

connections to a few services very frequently.

F10: unclassified, known non-P2P Port:(J). Up to this

point all heuristics mark flows independent of each other. All

flows left unmarked until now are neither suspected to be

P2P traffic nor obvious cases of non-P2P traffic. We believe

it is safe now to apply a port number classification on the

previously unclassified flows. All flows, whose source- or

destination port number matches a set of well-known non-P2P

port numbers including (http, messenger, game) are classified

non-P2P, if not classified by any heuristics (H1-H4, F1-F9).

H5: unclassified, long flow:(P) After removing well known

applications from the unclassified flows, we mark remaining

unclassified flows which carry more than 1 MB of data in one

direction or have connection durations of over 10 minutes as

P2P flows. This rule is based on Perenyis heuristic 6, even

though we believe it is a very weak rule. However, there is a

large probability, that such long flows in fact are P2P flows.

After running an analysis on our dataset based on the

presented heuristics, we classify all flows as P2P traffic which

have been classified by one or more of the heuristics H1-H5,

and at the same time NOT being classified by any of the

false positive heuristics F1-F10. In Section IV, flows marked

by H5 are included to P2P traffic. However, in Section V we

chose to treat traffic classified by this heuristic separately.

Weaknesses: The above suggested mixture of connection

pattern and port number classification has some weaknesses.

First of all, the analysis interval can greatly influence the suc-

cess of the heuristics, especially for those analyzing connection

patterns. Longer intervals yield better results given that the

various empirical thresholds are adjusted. A natural border

for the analysis interval is obviously given by memory and

computational constraints. Additionally, there is a risk with

too long intervals since activities on the Internet are often

short lived, and e.g. a host doing a scanning campaign on

port 80 might simply surf the Internet an hour later. Another

problem in this context are networks behind NATs or with

dynamically assigned IP addresses. A second weakness is

the length of the traces used. For connections established

before the measurement interval the initiator is unknown, and

it is unclear which host is source and which is destination.

Additionally there is typically some asymmetrically routed

traffic in backbone networks, which needs to be considered as

special case when implementing the heuristics. Furthermore,

heuristics based on connection patterns are depending on a

certain amount of connections per host during the analysis

interval. Finally, heuristics relying on empirical thresholds are

not fail-proof, and it is possible to come up with examples for

false positives for any of them. However, both Karagiannis

and Perenyi proved that these heuristics can be effective when

carefully prioritizing the different rules.



(a) #connections (106) (b) Amount of data (TB)

Fig. 1. P2P traffic by Karagiannis (K), Perenyi (P) and new proposal (J)

IV. VERIFICATION OF THE PROPOSED HEURISTICS

To verify the proposed adjustments, we classified our

backbone data by each of the three sets of heuristics

(Karagiannis, Perenyi and our own proposal in section III).

For each flow, a bitmask was set in a database according

to matching rules. This method allowed us to analyze

intersections between the three approaches separately -

meaning flows marked as P2P traffic by either one, two or

all three of the approaches. The results are illustrated by

the Venn diagrams in fig.1, presenting connection counts

(a) and amount of data (b) in absolute numbers. The three

circles represent P2P flows classified by the different rule-sets

(Karagiannis left, Perenyi right, new proposal beneath). The

following paragraphs will discuss the different intersections

(IS I-VII), thereby motivating the proposed modifications and

additions to the original approaches.

IS I: This intersection represents flows classified as P2P

by Karagiannis only. A number of updated rules identified

these flows as false positives. Rule F9 (attacks) marked 53%

of them, often classified as known non-P2P ports by Perenyi.

This is plausible, considering that these connections are mainly

1-packet flows, directed to popular scanning ports (135, 139,

445). Rule F2 (web) classified another 25% of these con-

nections, carrying 40% of the data in this intersection. Since

parallel connections to http ports are a strong indication for

web traffic, F2 is regarded as a reliable rule. F8 (non P2P-

ports) accounts for 15% of these connections, carrying 43%

of the data, mainly on ports for rtp, ssh and mail. This is

plausible, since it is common that these applications carry large

amounts of data, so there is no reason considering them as P2P

flows. The remaining flows are either marked by F7 (active ftp)

or F10 (unclassified, but known non-P2P port).

IS II: In this intersection, 99% of the data was classified

as P2P by Perenyi’s ’long flow’ rule only. This is obviously

Perenyi’s weakest heuristic, since it simply considers any flow

carrying more than 1 MB of data or lasting longer than 10

minutes as P2P. 75% of this data is considered as false positive

according to F10. Unclassified by any other heuristic, a pure

port number classification marks these flows as web flows

according to their destination http ports. Another 10% are

marked as web traffic by F2. The remaining data was classified

by F4 (mail), F5 (messenger) and F6 (gaming), all three

considered to be accurate rules, taking connection patterns and

port number into account. In terms of connection numbers,

95% of the connections in IS II are again identified as false

positives by F9 (attacks) with similar properties as in IS I.

IS III: All of the flows only classified as P2P by the pro-

posed heuristics are unclassified by Perenyi. Even Karagiannis

left 45% unclassified, with the remaining 45% classified by

the non-P2P IP/Port Pair rule. In [4] this rule was identified

as unreliable if less than 5 IPs are connected to an IP/Port

Pair. Since in H4 this restriction was taken into account, it is

plausible to include the flows marked as P2P in IS III based

on combinations of H4 and/or H3 (port usage).

IS IV: The flows classified as P2P by both Karagiannis

and Perenyi are in 98% of the cases again marked as false

positives by F9 (attacks), carrying very little data. In terms of

data, Perenyi’s ’long flow’ rule and Karagiannis’ IP/Port Pair

rule are responsible for 90% of the data in this intersection.

As discussed above, both rules are considered rather weak.

Since additionally none of the refined P2P heuristics (H1-H4)

matched, rule F10 (unclassified, but well known port) is reason

enough to exclude 80% of this flows as false positives (mainly

targeting http ports). The remaining flows have been marked

by F1 (web pairs), F5 (messenger) and F6 (gaming).

IS V: In this intersection, flows are entirely unclassified

by Perenyi. Since these flows are classified as P2P by both

Karagiannis and the proposed heuristics, there is no reason

not to consider them as P2P traffic.

IS VI: Perenyi’s ’long flow’ rule identified 77% of the

data in this large intersection as P2P, with the remaining

connections classified according to known P2P port numbers.

The proposed heuristics on the other hand classify 88% of

these flows as P2P by H2-H4, accounting for 72% of data.

Most of the data is even classified by 2 or 3 of the heuristics.

The remainder (685 GB) is classified by H5 (long flows) only,

and will therefore be treated as a special category in our

results section. Karagiannis leaves a large part (60%) of this

intersection unclassified, with the rest classified by the non-

P2P IP/Port Pair rule, which is an inaccurate rule for endpoints

with few connected hosts as noted above. Since there is no

strong indication to rule out flows as false positives, they are

classified as P2P except for the 685 GB by H5 (long flows).

IS VII: Data in this intersection is classified as P2P by both

Karagiannis and Perenyi, and no false positives were identified

by the proposed heuristics. Consequently, there is no reason

not to consider this intersection as P2P.

V. CLASSIFICATION RESULTS

We finally applied the proposed heuristics to our data

traces (Section II). Fig.2 represents time series of classified

network protocols. The x-axis of the graphs represents time,

with one bar for each trace time (2AM, 10AM, 2PM and

8PM). Four traces on three days (07/04, 09/04, 23/04) had

to be discarded due to measurement errors. The remaining

whitespaces between bars represent the 8 hour measurement

break between 2AM and 10AM, which means that each

continuous block represents 4 traces collected in the order of

[10AM, 2PM, 8PM, 2AM]. The first graph shows total amount



Fig. 2. TCP data vs trace times (first row); Appl. breakdown by #conn. (second row); Appl. breakdown by data carried (third row)

of TCP data in GByte versus trace times. The second and third

row illustrate application breakdown for the particular trace in

terms of connection numbers and data volumes.

In the connection breakdown, only four categories are

visible, since flows classified by H5 are too small in number

to show up in this graph. Anyhow, these 31,000 long flows

are responsible for almost 10% of the TCP data. Typically,

these flows begin and end outside the measurement period and

transfer data between hosts, which do not generate additional

traffic on our links. Since our classification method is based

on connection patterns, insufficient connection numbers for a

particular host reveal a weakness of this method. In the data

breakdown on the other hand, flows classified by F9 (attacks)

are not visible. Even though attacks represent between 8 and

60% of the flows, they carry less than 1% of the data on

average. This also proves the power of F9, since it effectively

detects DoS attacks and network scanning, which typically

show up as short 1-packet flows only, carrying no payload data.

P2P flows (flows matching H1-H4, while not matching any of

the false positive rules F1-F10) account for an average of 42%

of the connections. On the other hand, they carry between 66

and 87% of the traffic, with an average of 79%. This indicates

once more the success of the heuristics, since P2P flows are

expected to carry more data on average than non-P2P flows.

On this dataset, the proposed heuristics left as little as 1% of

the connections and 0.2% of the data unclassified (except the

flows classified by H5).

While a careful analysis of these results need to be done as

future work, the short result section should indicate the power

and usefulness of the proposed heuristics.

VI. SUMMARY AND CONCLUSIONS

This article proposes a set of heuristics for classifying

backbone-type data according to applications. The proposed

heuristics are intended to provide researchers and network

operators with a comparably simple2 method to get insight

into the type of data carried by their links. Furthermore these

heuristics work on traces as short as 10 minutes, which allows

2Simple, because it does not require packet payloads, updated payload
signatures or training data for statistical fingerprinting methods.

operators to classify snapshots of their traffic relatively fast,

by only adjusting applied thresholds and parameters empiri-

cally. The heuristics can be used to classify backbone traffic

according to a number of applications, including P2P traffic,

web traffic and other common applications. Furthermore, we

introduce a new rule that successfully identifies network

attacks, which is an additional feature for network operators

and researchers interested in network security or intrusion

detection issues. Some of the proposed heuristics are based

on two existing methods. Besides relying on the verification

methods of these original heuristics, a careful analysis of the

resulting classifications was carried out, pinpointing obvious

cases of false positives. Both previous sets of heuristics over-

estimate the number of P2P flows, mainly because attacking

traffic is not taken into account accordingly. On the other hand,

both methods underestimate the amount of P2P data on the

links. By combining the successful rules of the two methods

and adding new, necessary rules, a set of refined and updated

heuristics is presented. The heuristics are successfully applied

to a large collection of backbone data, yielding a valuable

breakdown of applied application protocols. When considering

the few large flows classified by the H5 rule as P2P traffic, the

proposed heuristics leave only 0.2% of the data unclassified.
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