
Entropy estimation for real-time encrypted
traffic identification

Peter Dorfinger1, Georg Panholzer1, and Wolfgang John2

1 Salzburg Research, Salzburg, Austria
{peter.dorfinger, georg.panholzer}@salzburgresearch.at

2 Chalmers University of Technology, Göteborg, Sweden
wolfgang.john@chalmers.se

Abstract. This paper describes a novel approach to classify network
traffic into encrypted and unencrypted traffic. The classifier is able to
operate in real-time as only the first packet of each flow is processed. The
main metric used for classification is an estimation of the entropy of the
first packet payload. The approach is evaluated based on encrypted ground
truth traces and on real network traces. Encrypted traffic such as Skype,
or encrypted eDonkey traffic are detected as encrypted with probability
higher than 94%. Unencrypted protocols such as SMTP, HTTP, POP3
or FTP are detected as unencrypted with probability higher than 99.9%.
The presented approach, named real-time encrypted traffic detector (RT-
ETD), is well suited to operate as pre-filter for advanced classification
approaches to enable their applicability on increased bandwidth.

Keywords: entropy estimation, real-time detection, traffic filtering

1 Introduction

During the last years the diversity of web based applications and their traffic
patterns has increased enormously. This hinders network management activities
which are to a substantial extent based on discriminative treatment of application
traffic. Available systems for traffic classification are either based on fast but
vague matching of IP addresses, transport protocol and ports or complex deep
packet inspection (DPI) or statistical approaches. Especially applications that
hide the traffic within encrypted communication are difficult to detect.

To detect such hidden applications often complex algorithms have to be
performed. Due to the complexity such approaches have to inspect all packets on
a link and consequently are unable to operate on high bandwidth links.

To overcome these shortcomings a fast and simple approach is needed that is
able to pre-filter the traffic. The pre-filtering has the advantage to reduce the
traffic which has to be further inspected to a reasonable amount. To keep the
complexity of the approach low, it is a prerequisite to minimize status information.
Thus our approach is designed such that pre-filtering of the traffic is performed
upon arrival of the first communication packet (excluding TCP 3way handshake).

The classification based on the first packet solely has, beside the aspect of
keeping status information low, the main advantage to be operational in real-time.

mailto:peter.dorfinger@salzburgresearch.at
mailto:georg.panholzer@salzburgresearch.at
mailto:wolfgang.john@chalmers.se


2 Peter Dorfinger, Georg Panholzer, and Wolfgang John

2 Related Work

In the late 1990s traffic classification was mainly performed on well known port
numbers. Nowadays traffic classification is more and more getting complicated
as an increasing number of applications try to hide its traffic from detection
or classification. As hiding is often performed within encrypted network traffic,
entropy-based classification algorithms have gained interest within the last years.
Entropy-based approaches are often used to detect malicious traffic [1,2].

Lyda and Hamrock [1] use an entropy-based approach called bintropy that
is able to quickly identify encrypted or packed malware. The entropy is used to
identify statistical variation of bytes seen on the network.

Pescape [3] uses entropy to reduce the amount of data that has to be processed
by traffic classification tools. Entropy is used as input for an advanced sampling
approach that ensures that sensible information needed to get an appropriate
model of the network traffic is still present. Packets not needed for an appropriate
model are dropped.

An entropy-based approach which inspired the present work is presented in [2].
The N-truncated entropy for different encrypted protocols is determined. For
example, for an HTTPS connection the byte entropy after 256 bytes of payload
should be between six and seven. If the value for a specific connection is below
this range, it is assumed that the connection is subverted.

In an earlier work [4] we concentrated on the possibility to pre-filter Skype
traffic based on information gathered from the first packet of a flow.

3 Entropy and Entropy estimation

In 1948 Shannon [5] developed a measure for the uncertainty of a message. This
measure is known as entropy in information theory. Shannon considers the case
where we have a fixed number m of possible events A1, . . . , Am whose probabilities
of occurrence p1, . . . , pm are known.

Entropy is defined as

H = −K

m�

i=1

pi log(pi), (1)

Entropy can be used as a measure of the information content of a message.
Equal probabilities lead to a maximum value for the entropy. Two concepts
within data processing result in a high value of entropy. First data compression,
as the bits needed for data representation should be minimized. Second data
encryption, as any predictable behaviour available in the source data has to be
removed. Both processing steps end with a data stream with equal probabilities
for each event/symbol.

Within this work we are using entropy as a measure of uniformity. For an
entropy-based test for uniformity an appropriate estimator for the entropy is
needed. But as stated in literature [6] estimating the entropy based on a sample



Entropy estimation for real-time encrypted traffic identification 3

is hard to retrieve, especially for N < m. Consequently we focus on a uniformity
test which is influenced by entropy but does not need the estimation of the actual
entropy.

Olivain and Goubault-Larrecq [2] present a work where, motivated by the
problems of estimating the entropy based on a sample of length N accordingly,
the N-truncated entropy is used instead. The N-truncated entropy HN (p) is
defined as follows. Generate all possible words w of length N according to p.
Estimate the entropy based on maximum likelihood (MLE) for all words w. The
N-truncated entropy is then the average of the MLE estimates, i.e. sum up all
MLE estimates and divide by the number of words to retrieve HN (p).

According to [2] HN (p), given that pi = 1/m for all i, which means that p
follows the uniform distribution U , HN (U) can be calculated by

HN (U) = 1

mN

�

n1+...+nm=N

��
N

n1 + . . .+ nm

�
×
�

m�

i=1

−ni

N
log

ni

N

��
. (2)

The maximum likelihood estimator can be used as an unbiased estimator
of HN . Checking for uniformity is then straightforward. Based on a sample of
length N estimate the entropy using MLE and compare the result to HN (U). The
closer the estimated value is to HN (U) the more likely is it that the underlying
distribution is uniform. Within our work we are using a Monte-Carlo method for
estimating HN (U) and the confidence intervals.

For very short words this method for detecting uniformity fails. Paninski [7]
states that for a uniformity test N >

√
m samples are needed.

4 Classification

The proposed traffic classifier is based on a 2-stage approach, where the false-
positive rate of the entropy estimation based classifier is reduced by the coding
based classifier.

4.1 Entropy estimation based classification

The entropy estimation based classification is the core classification component of
the whole approach. In contrast to other approaches like [2], only the first packet
that transports payload is used to identify encrypted flows. While on the one
hand this makes it more difficult to calculate an accurate estimate of the entropy
it enables the utilization of this technique in an online fashion, i.e., to identify
encrypted flows in live traffic without the need to buffer or delay packets.

The basic concept of our approach is to estimate the N-truncated entropy of
the actual payload ĤMLE(w) and compare the result to the estimated entropy of
uniformly distributed random payload HN (U) of the same length. The difference
between these two estimates is used to decide whether the flow is identified as
being encrypted or not. In accordance to Paninski [8] we do not use the entropy
estimation for payload with less than 16 bytes.



4 Peter Dorfinger, Georg Panholzer, and Wolfgang John

In order to preserve most of the encrypted flows we decided to use ĤN (U)±
3 × σ

ĤN (U) as a suitable confidence interval. This should include ĤMLE of

approximately 99.7% of uniformly distributed random payload.

4.2 Coding based classification

We assume that for plain text messages the payload is encoded in ASCII or
ANSI where values from 32 to 127 are used for printable characters. Based on
the entropy-based approach text message may look random, consequently we
defined an algorithm that identifies large text blocks within the payload.

The probability that a character from a random source will be in the range
from 32 to 127 is about 37.5%. Especially if at the beginning of the packet a large
fraction of characters is in this range the payload is most likely unencrypted.
Consequently we added a check that if the fraction of bytes with values between
32 and 127 is greater than 75% we assume that the flow is unencrypted.

As we want to reduce the processing time we do not evaluate the full payload
of the packet. For the coding based classifier only the first 96 bytes are evaluated.

5 Algorithm

This section presents the usage of the entropy estimation and coding based
classifiers within a novel approach for traffic classification based on information
solely gathered from content of the first packet of a flow. The first packet in this
context is defined as the first packet sent by a UDP connection and for TCP the
first packet is the one that follows the 3 way handshake. The term flow is defined
as bi-directional flow based on the 5-tuple.

We use a few lists to store information. The SYNList stores all 5-tuples where
we have received a packet with the SYN flag set. A 5-tuple is removed from the
SYNList after receiving the first packet containing payload or receiving a packet
where the FIN flag is set. Furthermore the 5-tuple will be removed from the
SYNList if, 60s after the SYN packet, there has not been any data packet. This
should prevent the SYNList from growing due to SYN flooding attacks.

A TCP or UDP flow which was detected as encrypted will be stored in the
ENCRList. The 5-tuple will be removed upon receiving a packet where the FIN
flag is set. Unencrypted UDP flows are stored in the UNENCRList. The UDP
5-tuples are removed from the lists after 300s inactivity of this 5-tuple.

The first block in Figure 1 ensures that the TCP 3 way handshake for all flows
will be forwarded, as traffic classifiers often need the 3 way handshake to identify
the start of a TCP connection. The 5-tuple of this flow is stored in the SYNList.
This behaviour can be changed to drop the 3 way handshake. The following two
blocks are responsible for forwarding/dropping of packets belonging to flows that
have already been identified as encrypted or unencrypted respectively. If a UDP
packet is not present in the ENCRList or in the UNENCRList it is the first
packet of a flow. For TCP flows it is checked whether the 5-tuple of the packet is
present in the SYNList, if so the packet is the first packet of a flow and has to be



Entropy estimation for real-time encrypted traffic identification 5

evaluated. The encrypted check executes entropy and coding based classifier to
determine whether the packet/flow is encrypted or not. If the flow is encrypted
it is added to ENCRList and forwarded, otherwise to the UNENCRList and
dropped. Detailed information about the implementation can be found in [9].

Forward  TCP  3way  
handshake

Forward  pkts  in  
ENCRList

Drop  pkts  in  
UNENCRList

Add  to  UNENCRList

Forward

Forward

Drop
Fo
rw
ar
d

P
ac
ke
t

D
ro
p

D
ro
p

First  pkt? Add  to  
ENCRList

Encrypted?Yes Yes

No

Fig. 1. Filtering flow chart

Trace  File

SPID  

Compare  results

Fi
le

R
es
ul
ts

RT-ETD

SPID  

R
es
ul
ts

Fi
le

Fi
lte
re
d  

Fi
le

Fig. 2. Evaluation process

6 Evaluation

For the evaluation we used another traffic classification tool (SPID, Statistical
Protocol IDentification), together with real network traces and traces where the
ground truth is known.

SPID [10] utilizes statistical packet and flow attributes to identify application
layer protocols by comparing probability vectors of these attributes to known
protocol models obtained on controlled training data. As comparison measure, the
Kullback–Leibler divergence together with a threshold is used. SPID is a hybrid
technique, utilizing generic attributes, which include statistical flow features
(e.g. flow and packet lengths) as well as packet payload characteristics (e.g. byte
frequencies and offsets). With a balanced combination of attributes, SPID was
shown to be very effective in differentiating between encrypted and obfuscated
protocols considered hard to classify [10].

As ground truth traces with encrypted traffic we use a subset of the fully
classified traces of encrypted traffic also used within SPID [10]. Session of en-
crypted eDonkey, MSE and Skype protocols (Table 1) have been collected at



6 Peter Dorfinger, Georg Panholzer, and Wolfgang John

a domestic network connection in Sweden by using Proxocket3, which enabled
efficient separation of network traffic on a per-application basis.

Real network traces have been collected in a network of a small cable network
provider in a segment used by about 100 customers. Several traces have been
collected in this network, for the evaluation we are using three of them. A 1h/2GB
trace, a 7.5h/13GB trace and a 35h/48GB trace. Additionally a 1 hour trace
with a total volume of 13GB from the network of a wireless provider used by
about 1000 customers is used for the evaluation.

Figure 2 shows a schematic representation of the evaluation process. In the
first step the collected trace files are processed by SPID and RT-ETD. The results
of SPID are used as 100% baseline within the individual traffic categories. The
filtered output files from the RT-ETD are then processed by SPID. The results
are then compared to the results based on the original file. The metric we are
using here is the fraction of flows in each category that can still be detected in
the filtered file and the fraction by which the size of the trace file was reduced by
the RT-ETD. An optimal result would be if still 100% of the encrypted flows are
present in the filtered files, and no unencrypted flows are present.

Table 1 shows the results based on the ground truth traces. The worst results
we get for encrypted eDonkeyTCP traffic, where 2.3% of the missing 5.5% is
dropped due to a packet length of the first packet that is shorter than 16 bytes.
An evaluation of including packets where the length is shorter than 16 bytes is
left open for future work.

Flows
Protocol original filtered

eDonkeyTCP encr. 398 94.5%
eDonkeyUDP encr. 828 99.6%
MSE 649 99.2%
SkypeTCP 91 97.8%
SkypeUDP 1973 98.0%

Table 1. Evaluation based on ground
truth trace, note that more than 94% of
the encrypted traffic is still present in
the filtered file.

Traffic amount

SYN + SYN/ACK flows 14.88%
VPN Key exchange 2.91%
VPN data 55.04%
Skype encr. 4.21%
SPID encr. 0.80%
AKAMAI 19.08%
unknown 3.08%

Table 2. Traffic shares of filtered file. The ma-
jor fraction of the traffic belongs to encrypted
protocols. SPID encr. includes all other en-
crypted protocols classifiable by SPID.

Based on the 1h/2GB real network trace we evaluated the usage for the
coding-based classifier for TCP and UDP traffic. Using the coding-based classifier
for UDP traffic does not influence the classification at all.

3 Proxocket is a dll proxy for Winsock that dumps a copy of the network traffic to and
from an application to a pcap file. (http://aluigi.altervista.org/mytoolz.htm#
proxocket)

http://aluigi.altervista.org/mytoolz.htm#proxocket)
http://aluigi.altervista.org/mytoolz.htm#proxocket)


Entropy estimation for real-time encrypted traffic identification 7

For TCP traffic the coding-based classifier removes about 900kByte from the
output file without changing the classification results of SPID. The 900kByte are
plain POP3 flows.

Table 3 shows the results of the evaluation of using our algorithm as pre-filter
for SPID. We are showing results for two traces collected in the cable provider
network, and results for the trace from the WLAN provider network. An empty
entry indicates a 0 count, this category is completely removed, whereas 0%
indicates that the fraction is below 0.01%.

Between 73% and 96% of the flows are dropped by our pre-filter. Unencrypted
flows such as FTP, HTTP, IMAP or SMTP are almost completely removed, which
is a strong indication that only a small fraction of unencrypted traffic is forwarded.
For encrypted protocols that we take into account, eDonkey TCP/UDP encrypted,
MSE, Skype TCP/UDP at least 76.7% (MSE) of the flows are still present in the
filtered file. For eDonkey and Skype the fraction is above 93%. SSH and SSL are
detected as unencrypted due to the usage of a plain connection establishment.
Such protocols can be easily detected by state of the art filtering methods and
are thus outside of the scope of our work.

7.5h/13GB 35h/48GB 1h/13GB
Type original filtered original filtered original filtered

Filesize [MB] 13531 3.36% 48527 2.94% 13157 12.5%
Sessions 242309 13.0% 1050206 4.37% 195243 27.1%
BitTorrent 64 8067 5061
DNS 30946 91015 22166
eDonkey 7169
eDonkeyTCP encr. 9 100% 36 100% 9653 96.2%
eDonkeyUDP encr. 44 93.2% 95 100% 21808 96.0%
FTP 443 31 24
HTTP 118226 210320 0% 46643
IMAP 248 1861 26
IRC 68 66
ISAKMP 4 3 33% 227
MSE 30 76.7% 280 99.3% 1323 81.7%
MSN 152 19 23
POP 9770 25528 632
SkypeTCP 773 99.5% 1167 99.4% 456 94.1%
SkypeUDP 18945 99.0% 27675 99.2% 6079 98.7%
SMTP 832 1075 53
SpotifyServer 55 74.5% 90 94.4% 306 95.4%
SSH 946 60529 26
SSL 10044 19203 0% 3210
UNKNOWN 50778 23.3% 603144 2.8% 70292 21.2%

Table 3. Results for SPID pre-filter. The filter reduced the filesize by a factor of about
20. Well known encrypted protocols are removed, whereas a large fraction of encrypted
flows is still present

For the 1h/2GB real network we performed a detailed analysis on the filtered
file. The trace is reduced to a size of 39.63MByte. Table 2 gives an overview of
the categories that are still present in the filtered file. Almost 15% of the traffic
is SYN+SYN/ACK traffic without any data communication. 63% of the traffic
is encrypted traffic, where for the detection of the Skype traffic we are using the
Adami Skype detector [11]. 19% of the traffic belong to a single flow where a
binary request, invoked by a flash player, requests content from the AKAMAI
distribution network.



8 Peter Dorfinger, Georg Panholzer, and Wolfgang John

7 Summary and Conclusions

In this paper we have presented how to use information from the first packet
of a flow to identify encrypted traffic. The algorithm consists of two classifiers
and can be used as real-time traffic filter as only the first packet of a flow has to
be evaluated. The core classifier is based on payload entropy estimation, where
entropy is used as a measure for uniformity which is an indication for encryption.
The algorithm is refined by a further classifier, which takes into account the coding
range used by the ASCII code. The main strength of the approach is its simplicity
and accuracy. Evaluation based on encrypted ground truth traces and real-world
network traces shows that more than 94% of the encrypted traffic is detected as
encrypted, and more than 99% of the unencrypted traffic as unencrypted. Well
known unencrypted protocols such as SMTP, HTTP, FTP, IMAP, POP3 and
DNS are detected as unencrypted with probability as high as 99.9%.

A typical use case for our real-time traffic filter could be to pre-process data
for L7 classifiers4 where the focus is on encrypted flows, or detecting hidden
traffic within encrypted flows. Using our approach the traffic volume that has
to be handled by these classifiers can be reduced by a factor of about 10 to 50,
depending on the traffic matrix.

References

1. Lyda, R., Hamrock, J.: Using entropy analysis to find encrypted and packed
malware. IEEE Security & Privacy 5(2) (2007) 40–45

2. Olivain, J., Goubault-Larrecq, J.: Detecting subverted cryptographic protocols
by entropy checking. Research Report LSV-06-13, Laboratoire Spécification et
Vérification, ENS Cachan (2006)

3. Pescape, A.: Entropy-based reduction of traffic data. IEEE Communications Letters
11(2) (2007) 191–193

4. Dorfinger, P., Panholzer, G., Trammell, B., Pepe, T.: Entropy-based traffic filtering
to support real-time Skype detection. In: IWCMC, Caen, France. (2010) 747–751

5. Shannon, C.E.: A mathematical theory of communication. Bell System Technical
Journal 27 (1948) 379–423, 625–56

6. Schürmann, T.: Bias analysis in entropy estimation. Journal of Physics A: Mathe-
matical and General 37(27) (2004) L295–L301

7. Paninski, L.: A coincidence-based test for uniformity given very sparsely sampled
discrete data. IEEE Transactions on Information Theory 54(10) (2008) 4750–4755

8. Paninski, L.: Estimation of entropy and mutual information. Neural Computation
15(6) (2003) 1191–1253

9. Dorfinger, P.: Real-Time Detection of Encrypted Traffic based on Entropy Estima-
tion. Master’s thesis, Salzburg University of Applied Sciences, Austria (2010)

10. Hjelmvik, E., John, W.: Breaking and improving protocol obfuscation. Tech. Rep.
2010-05, Computer Science and Engineering, Chalmers University of Technology
(2010) Online: http://www.iis.se/docs/hjelmvik_breaking.pdf (28.01.2011).

11. Adami, D., Callegari, C., Giordano, S., Pagano, M., Pepe, T.: A Real-Time
Algorithm for Skype Traffic Detection and Classification. In: Smart Spaces and
Next Generation Wired/Wireless Networking. (2009) 168–179

4 Classifiers mainly utilizing costly regular expressions on packet payloads.

http://www.iis.se/docs/hjelmvik_breaking.pdf

	Entropy estimation for real-time encrypted traffic identification
	Introduction
	Related Work
	Entropy and Entropy estimation
	Classification
	Entropy estimation based classification
	Coding based classification

	Algorithm
	Evaluation
	Summary and Conclusions


