Assessing the Quality of Packet-Level Traces Collected
on Internet Backbone Links

Behrooz Sangchoolie!, Mazdak Rajabi Nasabt, Tomas Olovsson?, Wolfgang John?

1 Chalmers University of Technology, Department of Computer Science and Engineering, SE-
412 96 Gothenburg, Sweden
behrooz.sangchoolie@chalmers.se, mazdak@student.chalmers.se,
tomas.olovsson@echalmers. se
2 Ericsson Research, Kista, Sweden
wolfgang.johneericsson.com

Abstract. The quality of captured traffic plays an important role for decisions
made by systems like intrusion detection/prevention systems (IDS/IPS) and
firewalls. As these systems monitor network traffic to find malicious activities,
a missing packet might lead to an incorrect decision. In this paper, we analyze
the quality of packet-level traces collected on Internet backbone links using
different generations of DAG cards?. This is accomplished by inferring dropped
packets introduced by the data collection system with help of the intrinsic
structural properties inherently provided by TCP traffic flows. We employ two
metrics which we believe can detect all kinds of missing packets: i) packets
with ACK numbers greater than the expected ACK, indicating that the
communicating parties acknowledge a packet not present in the trace; and ii)
packets with data beyond the receiver’s window size, which with a high
probability, indicates that the packet advertising the correct window size was
not recorded. These heuristics have been applied to three large datasets
collected with different hardware and in different environments.

We also introduce flowstat, a tool developed for this purpose which is capable
of analyzing both captured traces and real-time traffic. After assessing more
than 400 traces (75M bidirectional flows), we conclude that at least 0.08% of
the flows have missing packets, a surprisingly large number that can affect the
quality of analysis performed by firewalls and intrusion detection/prevention
systems. The paper concludes with an investigation and discussion of the spatial
and temporal aspects of the experienced packet losses and possible reasons
behind missing data in traces.

Keywords: Traffic measurement, measurement errors, packet drop, intrusion
detection/prevention system, firewall

! This work was supported in part by Swedish University Computer Network (SUNET).

1 Introduction

Firewalls and intrusion detection/prevention systems monitor network traffic for
malicious activities. These systems make decisions based on the observed traffic. For
instance if an attack's signature is a sequence of two packets, with the first one
containing pattern X followed by the second one containing pattern Y, missing either
of these packets by intrusion detection/prevention systems might result in a false
negative decision. For this reason, it is vital that they have the ability to capture all
packets on network. This is one of the motivations for network traffic analysis.

Even though simulating the behavior of different Internet protocols is possible
using well-known simulators, it is mostly believed that genuine Internet traffic
analysis is more advantageous. Plenty of traffic measurement research has been
performed so far; some focused on backbone traffic [1] [2] [3] while others aimed
more at edge links [4] [5]. In spite the advantages of analyzing genuine Internet
traffic, operational limitations always create challenges. As an example, special
purpose hardware and software are required in order to capture traffic from high
speed backbone links. Manufacturers of high speed measurement cards claim that
these cards can capture Internet traffic with 100% accuracy [6].

The community generally relies on the manufacturer’s claim; therefore not much
research has been done to verify trace quality. Plenty of literature focuses on
statistical properties of Internet traffic where missing a couple of packets do not have
any consequences. Others aim at systems that require all transmitted packets to be
present, such as intrusion detection systems. In order to detect all kinds of malicious
traffic, an intrusion detection/prevention system should be able to capture all the
transmitted packets.

In this paper we have analyzed the quality of packet-level traces with respect to
missing packets. The data has been collected on 10Gbit/s Internet backbone links
within the MonNet? project [1]. The result of our work can be used to find out
whether systems such as firewalls and intrusion detection/prevention systems are able
to capture all transmitted packets for malicious traffic detection. This can then be used
to verify the correctness of their behavior.

1.1 Related Work and Contributions

To the best of our knowledge, there have been very little investigations showing that
measurement cards are capable of capturing all the ongoing packets of their capturing
link. Even NSS labs’ Attack Leakage test [7] only evaluates deep packet inspection
capability of EndaceProbes, a server hardware product capable of running high speed
packet analysis using DAG cards. In this test the accuracy and performance of
IPS/IDS devices are evaluated. Devices are tested against a test traffic that contains
known number of attack vectors. The load is increased to a point where the device
under the test starts to miss detection of attack vectors. They also show that

2 MonNet project aimed to provide better understanding of Internet traffic characteristics based
on passive measurement of backbone links.

EndaceProbes can capture 100% of packets at 10 Gbit/s although they have not tested
DAG cards on other server solutions to see if they drop any packets for example as a
result of resource limitations.

Among the available tools, tcpanaly [8] is one of the oldest. Given a trace file,
tcpanaly verifies whether the observed TCP implementations follow the TCP
standard. It can also produce detailed statistics for TCP connections. One weakness of
tcpanaly is that it performs a two-pass analysis on the trace file. The two-pass analysis
results in a more time-consuming assessment and is not suitable for real-time analysis.
Tcpanaly also assumes that an ACK will always be sent back on the arrival of any
out-of-sequence data [8] which is a big limitation since not all end systems follow this
behavior. Tstat [5] is another relevant tool developed especially for statistical analysis
of TCP/IP traffic. Tstat uses the libpcap library and is capable of calculating more
than 80 different performance statistics. However tstat does not take missing packets
into account within its comprehensive TCP logs; therefore it cannot be used to
analyze packet drops.

The main goal of this paper is to analyze the quality (in term of completeness) of
collected traffic traces. In this way, we can investigate whether systems such as
firewalls have access to all the transmitted packets to detect suspicious activities.
Specifically, this paper contributes with the following:

e The development and implementation of a method to analyze the quality of data
with respect to missing packets in data captured in traffic measurement campaigns.

e An investigation of the spatial and temporal aspects of the experienced missing
packets in traces and plausible reasons behind missing data.

o A tool called flowstat, designed for this purpose, which can operate on saved traces
and on real-time traffic. Flowstat is written in standard C and is open to the
research community for further developments.

The remainder of this paper is organized as follows. In section 2, we describe the
data collection hardware and data sets which we used in our analysis. In section 3 we
present the reasons for missing packets in collected data. Section 4 describes our
methodology to detect missing packets. We present the overview of flowstat in
section 5 and in section 6 we present the results of our analysis. We conclude with a
summary of major findings and suggestions for further research in section 7.

2 Data Collection Hardware and Data Sets

Three different data collection campaigns of PoS HDLC traffic have been performed.
The first campaign was conducted during 2006 on an OC192 link inside the
GigaSUNET [9] network. The second campaign was conducted with the same
hardware but at a new physical location in the updated OptoSUNET [10] network. In
the third campaign, the physical location remained unchanged while the infrastructure
was slightly altered. Moreover, new system hardware including a new generation of
DAG cards was used. The hardware used consisted of high-end systems at the time of

3 The tool is available at http://sourceforge.net/projects/flowstat/

purchase. For simplification, we name campaign (2) and (3) OptoSUNET1 and
OptoSUNET?2, respectively. In GigaSUNET and OptoSUNET1, two measurement
nodes were used, one for each traffic direction and each equipped with one DAG
card. In OptoSUNET?2, one system was used with two data collection cards (Table 1).

The DAG cards were configured with a buffer reserved from the system's main
memory in order to deal with traffic bursts. For the hardware used in GigaSUNET and
OptoSUNET1, Endace recommends a buffer size of at least 32MB for OC-12 links,
thus we conservatively chose a large buffer of 512 MB for our OC-192 links. In
OptoSUNET2 we used DAG Tools ver. 4.2.0 without changing the default
configuration which used a buffer of 256 MB. The optical splitters were changed
between GigaSUNET and OptoSUNET1, but remained the same between
OptoSUNET1 and OptoSUNET?2. Since the signal strength was quite high, splitters
with a 90/10 ratio turned out to be sufficient for the sensitivity of the measurement
cards in all campaigns [11].

All traces have a duration of 20 minutes or longer. Packets with IP checksum
errors are preserved in our traces although packets with link-level CRC errors were
automatically discarded by the cards. In GigaSUNET, the DAG cards were
configured to capture only the first 120 bytes, and in OptoSUNET1 and
OptoSUNET2, only 160 bytes. Given that the average packet size on the links was
687 bytes and that 44% of all frames were smaller than 120 bytes and 160 bytes,
respectively (and thus not truncated by the DAG card), we calculated the average
packet size to be stored on disk to 88 and 110 bytes, respectively.

This means that even at a maximum link utilization of 10 Gbps, only about 200
MByte/s had to be transferred to disk. However, due to heavy over-provisioning of
the links, in reality the nodes rarely needed to store more than 35 MByte/s (280
Mbps) on disk during the measurement campaigns. Disk and processor performance
should therefore never have been an issue.

Table 1. Collection systems technical specifications

GigaSUNET and OptoSUNET1 OptoSUNET2

Motherboard Tyan K8SR Dell PowerEdge R710

CPU Two 2 GHz 64-bit AMD Opteron Two Intel Xeon E5620 2.4 GHz
Quad-core Hyper-Threaded

Memory 2 GB (1 GB per CPU) 16 GB DDR3 (shared among CPUs)

Bus dedicated to DAG 133 MHz 64-bit PCI-X Dual PCle x8

cards

Disk controller Dual-channel Ultra-320 SCSI PERC 6/1 RAID controller

Disks Six SCSI RAID-O0 (software) Six SATA RAID-0 (hardware)

Tested sustained disk write 410 MByte/s (for each DAG card) 520 Mbyte/s (shared between DAG

throughput cards)

Measurement card (DAG) DAG6.2SE DAGB8.1SX

Number of cards per 1 2

system

A longer discussion of possible limitations in data collection campaigns can be
found in [11]. After frame truncation, traces were de-sensitized and sanitized [11]
[12]. The de-sensitization consisted of two phases; first the payload of each packet
was removed using CAIDA'’s coralReef [13] crl_to_dag utility and then IP addresses
were anonymized using prefix-preserving Crypto-Pan [14]. Also as a result of the
prefix preserving nature of the anonymization, neighbor addresses will also be
neighboring after anonymization. Sanitization checks were also applied before and
after each de-sensitization step to verify the correctness of trace pre-processing.

3 Reasons for Missing Packets in Collected Network Data

According to Paxson [8], there are four types of measurement errors that affect the
quality of data; drops, additions, resequencing and timing. In this paper, our main
focus is to investigate and quantify the amount of packets dropped by the
measurement nodes or missed before being captured. Based on the mentioned
measurement errors and the data collection hardware used, we identify four sources of
measurement errors:

e Errors that are introduced by the DAG card, possibly as a result of frame
truncation, insufficient buffer space, PCI bus limitations and losses between the
DAG card and memory.

o Errors that occur if the measurement nodes do not accept all packets communicated
by the end nodes, like packets with link-level CRC errors.

e Errors introduced in trace pre-processing, e.g. de-sensitization.

o Missing packets that did not appear on the measured link due to alternative routes
between the communicating nodes. These packets might be missed due to routing
policies along the end-to-end path, such as load balancing.

Any packet drop due to insufficient buffer space, PCI bus limitations and losses
between the DAG card and memory is supposed to be reported by DAG cards [11].
Moreover, however unlikely, it is possible that buggy or faulty sanitization tools
introduce errors like packet drops into the traces.

All SUNET generations follow a per-flow routing policy. For this reason when a
flow's packet is observed on the link we expect to observe all of that flow's packets on
the same link. However, there is no guarantee for this assumption. As routing happens
on a packet-per-packet basis, it is possible that a flow's packets are routed through
different links.

Since TCP packets account for more than 90% of our captured packets, we made
the decision to apply two TCP based metrics on the traces in order to discover missing
packets. In the first metric, described in sub-section 4.1, we keep track of packets to
see if any packet that is not recorded by the measurement node is acknowledged by
the end systems. The second metric, explained at sub-section 4.2, assesses whether
any end-points transmit data beyond the allowed TCP window size, which is a
possible indication of missing packets.

4 Methodology

We have focused on two metrics that we believe are sufficient for detecting all types
of missing packets in TCP flows. Only bidirectional flows that have finished their
three-way handshake are evaluated. For simplicity throughout the remaining of this
paper, we use the term “bidirectional flows” instead of “bidirectional flows with
observed three-way handshake”. In this section the used metrics are explained.

4.1 Metric One[M1]: End Systems Acknowledge a Packet not Present in the
Trace

In this metric, flowstat keeps track of the next expected ACK number, expack, in each
direction (Fig. 1). After a successful three-way handshake, flowstat keeps track of the
packets and compares each ACK with the data it has observed up to that point.
Flowstat compares each packet’s ACK number with its corresponding expack. A
packet with an ACK number greater than expack denotes one or more missing packets
(Fig. 2). Flowstat is able to deal with out of order packets.

As soon as a measurement error is detected, the erroneous flow will no longer be
analyzed by flowstat, i.e. flowstat currently counts the number of flows with at least
one missing packets and not the total number of missing packets in the flow. We
decided on this approach because it is not possible to know exactly how many packets
were actually missed when there is an ACK greater than expack. Moreover an M1
measurement error will also most probably lead to more M1 measurement errors. If
desired, it is easy to modify flowstat to update expack with the value found in the
packet raising the error in order to approximate the amount of erroneous packets.

A Measurement B
(Connect) Node (Listen)
SYN [Seq - 4
[expackA]= x+1]
=yl

[expackB]

%%
v v v
Time Time

Fig. 1. The initial expack for each direction (measurement node’s view of the traffic)

& Measurement B
Node

[Seq=y, Ack=y, Data)

[expackA =|expackA +z

Ack=q Data=

r)

[Seq™P:

[expackB | expackB +r]
If (7 > expackA)
Raise M1 error;
Ignore flow;
A 4 W A 4
Tune Time

Fig. 2. When to raise an M1 measurement error (measurement node’s view of the traffic)

Despite the fact that M1 is a powerful metric, it is unable to detect missing zero-
length packets such as ACK packets carrying no data, keep alive packets, etc. Since
TCP is using a cumulative ACK system, keeping track of the packet lengths, as
explained in M1, will not assist us in discovering missing zero-length packets. In our
next proposed metric, the TCP window field will be used to equip flowstat with yet
another way of detecting missing packets including zero-length packets.

4.2 Metric Two[M2]: Data Beyond the Advertised Window

Inspired by Vern Paxson [8], we also implement another powerful check that can be
used to detect missing packets. M2 evaluates whether a sender has sent data beyond
the receiver’s earlier advertised window size. Nonstandard or faulty TCP
implementations may cause this behavior. Feng Qian et al. [15] believe that apart
from erroneous TCP implementations, the underutilization of the congestion window
is another reason for observing data beyond the receiver’s window size.

However, if both communicating parties are following the TCP standard, it can be
assumed with a high probability that the packet advertising the correct window size
has not been observed by the measurement node (Fig. 3).

Since there are other reasons apart from packet drops involved in observing data
beyond the advertised window size such as different implementation problems of
TCP/IP stacks, M2 is not as accurate as M1. On the other hand, unlike M1, M2 can
detect missing zero-length packets. Since we used different TCP properties to detect
missing packets corresponding to M1 and M2, none of them are necessarily a superset
of the other. Therefore flowstat reports both these metrics in order to detect missing
packets in TCP flows.

Measurement
Node

{chl"(, Ack

R Dam'_‘Z, Win=

A[Ack=y.

If (ptr = y+w)
Raise M2 error
Ignore flow:

v v v

Time Time

Fig. 3. When to raise an M2 measurement error (measurement node’s view of the traffic)

5 Flowstat Overview

In this section, an overview of flowstat is given. Flowstat keeps a connection table for
all active TCP connections and stores necessary information for sessions in each
direction. Only flows with an observed 3-way handshake are evaluated. Flowstat also
recognizes the value of TCP window scale option from the first two packets of each
flow’s three-way handshake and uses it to calculate the correct advertised window
size for each direction to be used in M2.

In our traces, we found packets with TCP set in the IP protocol field but without
enough data to build a TCP header [16]. Flowstat recognizes these malformed packets
and reports them as packet size errors, see Table 2. For all other TCP packets,
flowstat looks up the corresponding active flow from its connection table. If a SYN
packet is captured and no associated entry in the connection table is found, a new
entry will be created; whereas a non-SYN packet with no corresponding active flow
will be ignored. If there is an entry in the connection table that corresponds to a newly
captured packet, flowstat will update the entry’s necessary fields.

Each time an entry is updated, M1 and M2 checks are performed and in case an
error is detected, the erroneous flow counter is incremented and the flow’s entry is
removed from the connection table. Apart from M1 and M2 errors which can lead to
the removal of an entry from the connection table, RST and FIN packets also result in
removing the corresponding entry. These policies make sure that the size of the
connection table does not grow infinitely.

Flowstat also takes advantage of two timers to detect inactive flows and remove
them from the connection table. Choosing a proper value for these timers is a tradeoff
between longer execution time and the ability to evaluate more flows. The first timer
waits for the completion of the uncompleted three-way handshakes for 30 seconds
before removing these entries from the connection table. We also used 60 and 120
seconds as the value for this timer, but number of newly added bidirectional flows

was negligible. The second timer triggers the removal of entries for which no related
packet has been observed in a 120-second period. Claffy et al. in [17] show that 64
seconds is a good flow timeout. However, we choose a conservative large timeout in
order to make sure that flowstat detects all possible missing packets.

In order to validate the correctness of flowstat and the proposed metrics, two types
of tests have been performed on flowstat to test its ability to detect missing packets. In
the first test, errors were injected manually into random captured files i.e. a number of
packets were intentionally removed from these files. Flowstat could correctly detect
all these missing packets. In the second test, five sample trace files including around
one million bidirectional flows were examined by flowstat for missing packets. We
then randomly selected 10% of the flows with missing packets and manually verified
that they correctly were detected as being erroneous.

6 Data Analysis

In this section, we analyze the results of running flowstat on the captured traces. After
evaluating more than 400 captured traces, the total number of detected measurement
errors is shown in Table 2. As Table 2 illustrates, there are a great number of
unidirectional flows. This might to some degree be due to the fact that SYN attacks
and SYN scans are counted as unidirectional flows. SUNETSs network layout and
routing policies also introduce a fair amount of asymmetrical routing [18] (e.g. hot-
potato routing), and many flows are indeed unidirectional.

Table 2 also shows that the total number of M2 measurement errors is almost three
times as large as M1. This might be due to the fact that not just missing packets, but
also nonstandard and faulty TCP implementations as well as underutilization of the
congestion window and implementation problems of TCP/IP stacks cause us to
observe data beyond the receiver’s window size, which in turn result in M2
measurement errors.

Table 2. Total number of M1 and M2 measurement errors in different SUNET generations.
The values inside parenthesis refer to the number of analyzed traces.

Flows Flows Packet
SUNET Total number Unidirectional Bidirectional with with size
generation of packets flows flows M1 M2 error
errors errors

GigaSUNET(240) 21,136,187,688 62,808,014 54,724,892 44549 118,177 66,122

OptoSUNET1 28,446,722,927 192,709,261 19488316 9,335 39,102 887,384
(163)

OptoSUNET2 (4) 1,838,475,707 495,312,512 1,127,806 4,324 1,235 31,675

Total(407) 51,421,386,322 750,829,787 75,341,014 58,208 158,514 985,181

0.45%
0.40%
0.35%
0.30%
0.25%
0.20%
0.15%
0.10%
0.05%
0.00%

0.38%

GigaSUNET OptoSUNET1 OptoSUNET2

m[M1] ®m[M2)

Fig. 4. Percentage of M1 and M2 measurement errors in bidirectional flows

Fig. 4 shows the percentage of M1 and M2 measurement errors in bidirectional
flows. It can be seen that there is only a small difference in the detected percentage of
measurement errors between GigaSUNET and OptoSUNET1, while OptoSUNET2 is
considerably different. However, only four trace files have been analyzed from
OptoSUNET?2 and these traces have been captured on the same day and during a
three-hour time period which makes it difficult to draw any accurate conclusions.
Moreover, the dissimilar behavior of OptoSUENT2 might be due to new routing
policies or the new hardware, which could be faulty or, more likely, not able to cope
with the load.

The IP addresses were anonymized in the trace files using the same key, so each IP
address consistently shows up as the same IP address after anonymization. Therefore
it is possible to check if there are specific erroneous IP addresses which are more
represented than the others. Fig. 5 shows the erroneous IP addresses and number of
times they occur in each SUNET generation.

In the first two SUNET generations, in Fig. 5, the IP addresses have been scattered
more for M2 than for M1, and there are some IP addresses that are overrepresented in
the erroneous flows, especially in M2. A possible reason can be that there are nodes
that either do not follow the proper TCP implementation or that they send packets
with link-level CRC errors which are considered as erroneous by the measurement
node and are dropped. Moreover, Fig. 5 shows that a lot of overrepresented erroneous
IP addresses are adjacent which might indicate that they belong to the same subnets.
It is noticeable that the systems responsible for many of the M1 errors are also
responsible for M2 errors in both the GigaSUNET and OptoSUNET1 generations.
And as mentioned before, the limited number of OptoSUNET2 traces makes it
difficult to draw any accurate conclusions about this SUNET generation.

1800 3500
\» 1600 5w - 23000 *
g 1400
g 1200 2500 . —_—
S 1000 2000 . —
o
‘s 800 1500 .
4 gop 4 7
2 1 1000 -
5 400 i T o . ..
Z 200 ¢ 500 4
i .
0 I 0 8 |
0 10000 20000 30000 40000 50000 0 20000 40000 60000 80000 100000
M1 erroneous IP addresses (GigaSUNET) M2 erroneous IP addresses (GigaSUNET)
1800 500
1600 -» 450 L
& 1400 400
c
£ 1200 350
g 1000 - 2001
o 250 -
‘s 800 200 -
2 600
2 150 -
2 400 . 100 -
200 - — 50 -
0 omihiesiemdtnmets 0
0 2000 4000 6000 8000 10000 0 10000 20000 30000 40000
M1 erroneous IP addresses (OptoSUNET1) M2 erroneous IP addresses (OptoSUNET1)
1600 - - 400 |
1400 +-* 350 i .
2 1200 + 300 +
o
£ 1000 - - 250 |
8 800 200 -
o
g 600 - - 150 } -
E 400 1 - 100 + —
z |
200 z - - L 50 -
abutradiibcmatoin, JCORCIFY TP P
0 : ! 0 —
0 500 1000 1500 2000 0 500 1000 1500
M1 erroneous IP addresses (OptoSUNET2) M2 erroneous IP addresses (OptoSUNET2)

Fig. 5. Number of times an IP address has been seen in erroneous flows. The smallest and the
largest values on the x-axis correspond to the smallest and the largest IP addresses respectively.

Table 3, shows the percentage of erroneous IP addresses which were detected more
than 10 times along with the percentage of erroneous flows containing these IP
addresses. The selected value, 10, is good enough to show that a small group of IP
addresses were observed in a lot of erroneous flows. This is also another indication
that there might be systems that are not following proper TCP implementations and
are responsible for most of the errors. It can also be seen that these small groups of IP
addresses are seen in all (100%) of the erroneous flows detected by M2 and M1 in

GigaSUNET and OptoSUNET?2 respectively. There are several possible explanations
for this behavior:

e The overrepresented end systems send large bursts of traffic and the measurement
node’s hardware cannot cope with the load.

o The overrepresented end systems send lots of data which leads to more M1 and M2
errors.

e Some packets of the overrepresented end systems are routed a different way.

Table 3. Percentage of erroneous IP addresses detected more than 10 times and the percentage
of erroneous bidirectional flows containing these IP addresses.

M1 error M2 error
IP addresses Flows IP addresses Flows
GigaSUNET 2.7% 85% 2.6% 100%
OptoSUNET1 2.6% 64% 2.8% 75%
OptoSUNET?2 8.3% 100% 1.5% 51%

As mentioned before, all traces have a duration of 20 minutes or longer and have
been captured at different times during the day. We have also classified the traces
according to the time that they have been captured. The percentage of measurement
errors in different time periods is shown in Table 4. The different time periods
roughly experienced the same percentages of measurement errors, even though traces
which were captured between 12pm and 12am hold slightly more erroneous flows. It
is notable that the percentage of measurement errors is larger during the working
hours (6am to 6pm) compared to the other periods and grows even more during the
evening. This might be due to the fact that traffic patterns and services differ during
night time.

Table 4. Percentage of M1 and M2 measurement errors in bidirectional flows captured in
different time periods. N/A indicates that no trace file has been analyzed in this time period.

[12am - 6am) [6am — 12pm) [12pm — 18pm) [18pm — 12am)

M1 M2 M1 M2 M1 M2 M1 M2
GigaSUNET 0.02% 0.04% 0.01% 0.04% 0.01% 0.05% 0.03% 0.06%
OptoSUNET1 0.007% 0.02% 0.006% 0.03% 0.018% 0.07% 0.015% 0.07%
OptoSUNET2 N/A N/A N/A N/A 0.38% 0.1% N/A N/A

7 Conclusions

In this study more than 400 traces were analyzed in order to evaluate the quality of
packet-level traces collected from Internet backbone traffic using Endace DAG cards.
The quality of captured traffic is important for systems such as firewalls and intrusion
detection/prevention systems which make decisions based on the captured network
traffic. Missing an attack's signature packet by these systems might result in an
incorrect or false negative decision.

We have proposed two TCP-based metrics, M1 and M2 which detect missing
packets in TCP flows in the collected traces, and we believe that these metrics are
good indicators of the quality of the collected data.

The first metric, M1, detects packets with an ACK number greater than the
expected ACK number, something that indicates that the end-nodes have
acknowledged packets that are not present in the traces. The reasons for this behavior
is either that the measurement system has dropped the packet, or that the packet was
actually not present on this link due to routing decisions along the end-to-end route.
Even though M1 is a powerful metric, it cannot detect missing zero-length packets i.e.
packets containing no data such as keep-alive packets, since ACKs are cumulative in
their nature, see sub-section 4.1.

The second metric, M2, deals with observing data beyond the receiver’s advertised
window size, which corresponds to the situation where the packet advertising the
receiver’s correct window size has been dropped by the measurement node. M2
measurement errors may also be triggered by implementation problems of TCP/IP
stacks or nonstandard TCP implementations sending packets outside the advertised
window, possibly with the hope of gaining better performance. As opposed to M1,
M2 can also detect missing zero-length packets.

Nearly 0.08 and 0.2 percent of the bidirectional flows were considered as
erroneous by M1 and M2, respectively. While there was only minor differences
between the results of the GigaSUNET and OptoSUNET1 campaigns, OptoSUNET2
showed slightly different results. After evaluating the erroneous IP addresses, we
realized that a small percentage of IP addresses have been observed in many,
sometimes even in all, of the erroneous flows. We also showed that the numbers of
measurement errors are rather similar regardless of at what time the traces were
collected.

The result of our study showed that a considerable number of flows had missing
packets. Even though the source of missing packets is not clear, they can affect the
correctness of the decisions made by firewalls or intrusion detection/prevention
systems. This is especially valid for Internet backbone links where huge amount of
network traffic is transmitted in a second.

In order to do the analysis of the traces, we have developed a tool called flowstat
which is capable of analyzing captured trace files. Depending on the specifications of
the computer system and link speed, flowstat is also capable of analyzing real-time
traffic.

Limitation. There are some limitations which influence our methodology. First, the
possibility of asymmetrical routing may cause different packets of a flow to be routed
through different links. Second, due to the possible improper implementations of
TCP/IP stack from end points, the second metric is not as accurate as the first one.

Future Work. In this paper we have shown that packet losses are present in all our
collected traces, regardless of when, where and with what hardware they have been
collected. We have also given some reasons for packet loss, but more work is needed
to investigate the sources for errors and to find out why and to what degree they
contribute. The systems we have used may or may not be representative for many
other data collection campaigns, but the overall conclusion must be that it is worth

investigating the quality of the traces using the flowstat tool if 100% accuracy is
desired. We would also like to encourage the community to use flowstat to check
other traces taken in other environments (e.g. using a single link to ensure 100%
visibility of inbound and outbound traffic) and compare the results with ours.

As discussed in section 6, a small percentage of IP addresses/hosts experienced a
large number of packet drops. It would be interesting to investigate these hosts in
more detail, for example to use packet headers to find out what operating system they
have. These erroneous flows might as well have other common characteristics which
can be checked to find yet other reasons behind the missing packets. Flowstat can be
improved in a number of ways. Flowstat’s default behavior is to remove erroneous
flows from the connection table as soon as they are detected by any of the metrics.
This prevents the metrics from being applied multiple times on the observed flow.

References

1. Wolfgang John, "Characterization and Classification of Internet Backbone Traffic,"
Chalmers University of Technology, gothenburg, Sweden, PhD Thesis 0346-718X,
2010.

2. Daniela Brauckhoff, Xenofontas Dimitropoulos, Arno Wagner, and Kavé Salamatian,
"Anomaly extraction in backbone networks using association rules,” in IMC '09
Proceedings of the 9th ACM SIGCOMM conference on Internet measurement
conference, New York, NY, USA, 2009, pp. 28 - 34.

3. Chuck Fraleigh et al., "Packet-Level Traffic Measurements from the Sprint IP Backbone,"
IEEE Network, vol. 17, no. 6, pp. 6 - 16, December 2003.

4. Fengjun Shang, "Research on the Link Traffic Measurement System Based on Edge
Measurement," in International Conference on Communications, Circuits and Systems,
Guilin, Guangzi, China, 2006, pp. 1791 - 1795.

5. Marco Mellia, Renato Lo Cigno, and Fabio Neri, "Measuring IP and TCP behavior on edge
nodes with Tstat," Computer Networks, vol. 47, no. 1, pp. 1-21, January 2005.

6. Endace. (2011, September) Enterprise Network Monitoring Tools, Network Security
System, Application Performance Monitoring. [Online]. http://www.endace.com/the-
endace-platform.html

7. NSS lab, "Network Intrusion Detection System individual product test result,” NSS Labs,
Auckland, New Zealand, 2010.

8. Vern Paxson, "Automated packet trace analysis of TCP implementations,” in Proceedings
of the ACM SIGCOMM conference on Applications, technologies, architectures, and
protocols for computer communication, Cannes, France, 1997, pp. 167-179.

9. SUNET. (2011, September) History of the Swedish University Computer Network.
[Online]. http://basun.sunet.se/karta/

10. SUNET. (2011, September) The Swedish University Computer Network OptoSUNET.
[Online]. http://basun.sunet.se/aktuellt/optosunetbroschyr_eng.pdf

11. Wolfgang John, Sven Tafvelin, and Tomas Olovsson, “Passive Internet Measurement
Overview and Guidelines Based on Experiences," Computer Communications, vol. 33,
no. 5, March 2010.

12. Wofgang John and Sven Tafvelin, "Analysis of Internet Backbone Traffic and Header

Anomalies Observed," in IMC '07: Proceedings of the 7th ACM SIGCOMM conference
on Internet measurement, San Diego, 2007, pp. 111 - 116.

13. Ken Keys et al., "The Architecture of CoralReef:An Internet Traffic Monitoring Software
Suite," in a workshop in passive and active measurement, Amsterdam, The Netherlands,
2001.

14. Jinliang Fan, Jun Jim Xu, Mostafa H. Ammar, and Sue Bok Moon, "Prefix-preserving IP
address anonymization: measurement-based security evaluation and a new
cryptography-based scheme,” in ICNP: proceedings of the 10th IEEE International
Conference on Network Protocols, Washington, DC, USA, 2002, pp. 280-289.

15. Feng Qian et al., "TCP revisited: a fresh look at TCP in the wild," in Proceeding of the 9th
ACM SIGCOMM conference on Internet measurement conference, Chicago, lllinois,
2009, pp. 76-89.

16. Tomas Olovsson and Wolfgang John, "Detection of malicious traffic on backbone links via
packet header analysis," Campus-Wide Information Systems, vol. 25, no. 5, pp. 342 -
358, 2008.

17. K.C. Claffy, Hans Werner Braun, and George C. Polyzos, "A parameterizable methodology
for Internet traffic flow profiling," Selected areas in communications, vol. 13, no. 8, pp.
1481 - 1494, October 1995.

18. Wolfgang John, Maurizio Dusi, and K. C. Claffy, "Estimating routing symmetry on single
links by passive flow measurements,” in IWCMC '10 Proceedings of the 6th
International Wireless Communications and Mobile Computing Conference, Caen,
France, 2010, pp. 473 - 478.

