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In service provider networks, operators will take advantage of the possibilities to aggregate traffic by applying coarse-grain 

flow definitions, which can be realized in modern OpenFlow [1] by applying wildcards in certain fields of the flow definition 

table. Service provider SLAs depend on the ability to monitor performance metrics, including packet loss rates, delay, etc. 

Such measurement capabilities provide operators with greater visibility into the performance characteristics of their networks, 

thereby facilitating planning, troubleshooting, and network performance evaluation. While this capability is important, 

operators try to limit the overhead of management-specific traffic in operational networks as much as possible. Good 

practices call for the entire management traffic to not exceed about 5% of the total aggregated data traffic. Another aspect of 

the management overhead associated with monitoring is the signaling related to setting up and tearing off monitoring 

sessions, exemplified by protocols such as OWAMP and TWAMP in packet networks or GMPLS extensions for setting up 

OAM tools in MPLS and carrier Ethernet networks. 

1. State-of-the-Art SDN monitoring 

OpenFlow counter based solutions of [4-6] do not specify how aggregated and wild carded flows could be used for accurate 

loss measurements. The selection of specific microflows (i.e. exact flow definitions without wildcards) for retrieving packet-

loss samples is not covered by any of the solutions in [2, 4-6]. The validity of the packet loss calculations made by directly 

comparing OpenFlow per-flow packet counters is negatively affected by grouping flows using wildcard rules in two ways:  

a. There is no guarantee that wild-carded flow definitions at one switch correspond to the same definition on other 

switches, i.e. wild-carded flow definitions do not reflect the same set of aggregated microflows. This can be caused by 

varying flow definitions on different locations along a path, or use of microflows at intermediate switches, diverting 

parts of the original aggregated flow to other network paths.  

b. Pull-based mechanisms applied during flow life-time create synchronization problems due to the unsure state of in-flight 

packets when comparing packet counters for packet-loss measurements. Furthermore, wildcarded-rules providing flow 

aggregation are often pre-installed and are unlikely to timeout at all, or at least very seldom. As a result, start and end of 

aggregated flows are not clearly defined, providing not sufficient data points for continuous packet-loss measurements. 

DevoFlow [3] is focused around throughput and link utilization measurements. It runs the risk of generating large amounts of 

management traffic when an elephant flow receives the same automatic threshold for generating notifications towards the 

controller as a mice flow. Per-flow single triggers would need to be configured based on the nature of the flow (elephant or 

mice), meaning automated adaptation is difficult without controller intervention and require even more complexity on the 

data plane switch. Automatic rule cloning is not controlled in any way, which may translate onto requirements for large flow 

tables, potential resource exhaustion or aggressive eviction of controller-installed flows. It is difficult to accurately calculate 

delay since timestamping has to be performed in the controller when reports arrive (hence the interval would include the 

delay between the switch and the controller, affecting mice as well as intermediary periodic reports from elephants). 

FlowSense [2] presents a method for monitoring network utilization by making use of message exchanges typical to the 

OpenFlow protocol. The method thus introduces no additional traffic into the network, hence the claim of “zero cost”. 

Service provider SDN scenarios with pre-provisioned and aggregated flow definitions (using wildcard rules) cannot be 

covered by straightforward extensions of this method, because such flows are pre-installed and do not expire. Thus the 

markers needed to determine the lifetime of the flow are not generated. Also, the method does not describe how to identify 

the same packet or packets sequence at different monitoring points, which is required for loss measurements. 

2. Low-overhead packet loss measurements 

We depict our method for estimation of packet loss (and optionally one-way delay) in Fig. 1. The method is taking advantage 

of user traffic transported using aggregated flow descriptors, as common in SP-SDN scenarios. An edge node identifies at the 

starting point of the measurements a microflow part of an aggregated flow descriptor according to policies delegated by a 

controller. The edgenode then automatically creates the required per-microflow descriptors within the switch and configures 

the entry (e.g. time-out values) in a way that adapts to the nature of the microflow (e.g. elephant vs mice). Next, the edgenode 



 

 

coordinates further measurement points via the controller with other switches in the measurement path. Once the microflow 

expires, notifications including per-microflow packet counts are generated towards the controller from all measurement 

points along the flow path (i.e. switches where the microflows have been configured). The controller estimates the packet 

loss based on the received messages. One-way delay measurements could also be performed by including timestamps in the 

notifications. Due to space constraints, we will briefly mention here only certain key parts of our method. 

Microflows to be used for packet-loss measurements are selected based on policies configured by the controller on the edge 

switch. Examples of policies can be ALL microflows, sampled subsets of existing microflows (random, systematic, etc.), or 

based on specific packet header field values. The OpenFlow messaging protocol is extended to notify the controller of 

microflows selected by the edge node that starts the measurement. For the selected microflows, at least the flow definition 

(match structure) needs to be communicated to the controller.  

Within a switch, we define a new flow 

cloning mechanism adapted to multiple 

tables as specified in modern OpenFlow. 

The auto-devolving functionality can be 

applied to any table in the pipeline for 

the multiple table abstraction. However, 

it needs to be ensured that the 

instructions associated with the wildcard 

rules (e.g. goto-table instructions) are 

inherited by the auto-devolved 

microflows, so that the path through the 

pipeline remains unaltered. By choosing 

which table in the pipeline is to perform 

auto-devolvement for a particular 

aggregate rule, the controller is allowed 

to select the level of granularity of the 

devolved flows, since rules in preceding 

tables might already have acted as filters 

of which subset of flows to devolve. In addition to the standard OpenFlow 1.4 eviction and vacancy mechanisms, each 

aggregate rule is allocated a certain devolvement space in the table in order to avoid overconsumption of the available flow 

table space. This is configured by the controller when the rule is installed and it can be chosen to reflect knowledge about the 

level of aggregation expected within this flow. The devolvement process for a particular rule would then only use this space.  

On expiration of a microflow on measurement points (e.g. through idle-timeout), a flow_removed notification is sent to the 

controller. This is existing OpenFlow behavior and no extensions are required. The flow_removed message includes among 

others packet counts at the time of removal. An application on the controller has thus accurate values to retrieve packet-loss 

rates for the specific flow by subtraction of per-flow packet counters. 

A way to realize unidirectional flow delay measurements is based on the assumption that switches are time synchronized (e.g. 

through NTP, IEEE 1588, etc.), allowing them to timestamp flow expirations. Assuming that flow inactivity timers on all 

nodes are known by the controller, the delay could be obtained by calculating the differences between the flow expiration 

timestamps, accounting for potentially different inactivity timeouts. 

We are working towards implementing and evaluating low-overhead packet loss measurements for wildcarded flows as part 

of our contribution to the FP7 UNIFY project (http://www.fp7-unify.eu/). One of the objectives of the WP on Service 

Provider DevOps is to develop scalable and programmable SDN monitoring capabilities [7], where this work will contribute. 
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Figure 1: Components and processes realizing low-overhead packet loss measurements.  
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