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Abstract: Although there is consensus that Software Defined Networking and Network Function Virtualization 
overhaul service provisioning and deployment, the community still lacks a definite answer on how carrier-grade 
operations praxis needs to evolve. This paper presents what lies beyond the first evolutionary steps in network 
management, identifies the challenges in service verification, observability, and troubleshooting, and explains how to 
address them using our Service Provider DevOps (SP-DevOps) framework. We compendiously cover the entire 
process from design goals to tool realization and employ an elastic version of an industry-standard use case to show 
how on-the-fly verification, software-defined monitoring and automated troubleshooting of services reduces the 
cost of fault management actions. We assess SP-DevOps with respect to key attributes of software-defined 
telecommunication infrastructures both qualitatively and quantitatively and demonstrate that SP-DevOps paves the 
way towards carrier-grade operations and management in the network virtualization era. 
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1 Introduction 

Software-Defined Networking (SDN) and Network Function Virtualization (NFV) enable operators to use network 
service function chains that are no longer static and embedded into special-purpose physical network elements nor 
deployed at pre-planned and fixed points in the infrastructure. This change has a profound effect on network 
operations. As advocated in [1], virtualized networks based on Network Functions (NF) and end-points chained 
together through Network Function Forwarding Graphs (NF-FG) can be highly dynamic and programmable in terms 
of service definition and execution. In this context, open application programming interfaces (APIs) will take 
precedence over, for instance, vendor-specific command line interfaces (CLIs) as currently used by expert 
administrators in the field. The availability of NF APIs combined with SDN programmability calls for handling carrier 
infrastructure and resources using techniques common in the software engineering realm, thus changing the practice 
of network management significantly. 

The first contribution of this paper is a compendious tutorial addressing the wider network research and practitioner 
communities about how to handle the operational complexity of carrier-grade software-defined infrastructures 
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(SDIs) through Service Provider DevOps (SP-DevOps). We explain how SP-DevOps eases verification and activation of 
complex services using novel network and service observability, diagnostics and troubleshooting methods ready to be 
integrated into developer and operations workflows. The second contribution of this paper is the assessment of SP-
DevOps and a qualitative comparison with earlier proposals and publicly available toolsets. Finally, we summarize and 
provide pointers to the publicly available open source contributions that implement SP-DevOps in practice. Interested 
readers can delve into the full details of SP-DevOps in our publicly available technical report [2]. 

Next, we review the requirements, objectives and related initiatives for network operations in SDIs. We then present 
the SP-DevOps paradigm followed by an illustrative use case. We conclude this paper with an assessment and 
summary of our contributions. 

2 Requirements, Objectives and Related Initiatives 

Traditional telecom and IT infrastructure operations are governed by extensive processes typically following eTOM [3] 
and ITIL [4]. Originally designed for preplanned, hardware-oriented, physical infrastructure, recent work in the TM 
Forum ZOOM group as well as IETF initiates the adaptation of these processes for SDIs. Requirements for carrier-
grade telecom infrastructures include high-availability (“five 9s”); scalability to hundreds of thousands of nodes 
covering large geographical areas; and the ability to monitor performance parameters for Service Level Agreements 
(SLAs). As a first objective, SDIs must conform to said requirements, but also meet new challenges [5]. 

The key characteristics of SDIs are agility to introduce new services in the market in minutes rather than in months or 
years, and elasticity to dynamically optimize demand-responsive resource allocation in accordance with policy. SDIs 
are fueled by programmability and automation that reduce manual interaction with equipment and management 
systems. We use the term orchestrated assurance to refer to the integration between fulfillment, i.e., programmable 
orchestration, and assurance systems which can generate actionable insights based on huge quantities of data. 

Agility, elasticity and programmability introduce new objectives in two additional areas, namely infrastructure 
validation and verification of all components. In the context of SDIs, we regard validation as an evolution of the 
traditional performance checks prior to service activation. In contrast, service verification relates to the formal 
correctness of the code executed at different SDI levels. Specifically, correctness against a set of rules and policies 
must be verified, whether the code represents a single network element or a complex service chain. 

A comprehensive summary of industry and research activities related to NFV and SDI can be found in [6]. Table 1 
reflects our assessment of selected management frameworks with respect to the above-mentioned SDI 
characteristics. For instance, CloudWave [7] developed a Platform-as-a-Service that presents detailed views of the 
enterprise cloud infrastructure to application developers and enables fast development cycles. T-NOVA [8] provides 
a Network Function Store as part of a self-service portal where customers could select virtual appliances to add to 
their services, complemented by automatic deployment and monitoring. The implementation of the ETSI MANO 
framework through components selected and integrated through the OPNFV project focused initially on the virtual 
infrastructure layer and its management. Finally, IBM BlueMix addressed the needs of enterprise mobile and web 
developers with DevOps services that simplify application development and deployment. However, none of them is 
complete with respect to the SDI characteristics outlined in this section. We examine how SP-DevOps addresses these 
objectives in section 4.3.2. 



Table 1: Carrier network management frameworks. 

Project or Framework Carrier-grade Agility Elasticity Infrastructure  
Validation 

Service  
Verification 

Orchestrated  
Assurance 

eTOM [3] Yes Partial* Partial* Manual No No 

ITIL [4] Partial* No Partial* Manual No No 

MANO - OPNFV Yes Ongoing** Ongoing** Partial* No Ongoing** 

CloudWave [7] No Partial* Yes No No Yes 

T-NOVA [8] Partial* Yes Partial* Partial* No No 

IBM BlueMix with DevOps 
Services 

No Yes Yes Partial* No Yes 

UNIFY SP-DevOps [2] Yes Yes Yes Ongoing** Ongoing** Yes 

* Partial implies that some requirement areas are addressed but significant open issues remain with little or no activity 
to tackle them as of June 2016. 

** Ongoing means that we consider the requirement as fulfilled from a conceptual point of view, but stable version 
documents, technical descriptions, or full implementations have yet to be released as of July 2016. 

3 Service Provider DevOps  
IT DevOps tackles objectives comparable to the ones listed above but for data center (DC) environments. DevOps, 
however, is not a single method that can be directly applied to telecommunication SDIs. Telecommunication 
infrastructure exhibits several orders of magnitude more distribution than DC infrastructure, spreading over very 
large geographical areas making carrier-grade requirements such as high availability or strict latency bounds harder 
to meet. Furthermore, telecom resources range over multiple network and DC domains, typically consisting of 
heterogeneous hardware and software which contrasts starkly with the homogeneity of DC resources. Finally, basic 
DC operational assumptions regarding network latency and capacity do not hold. 

Adopting DevOps involves an organizational shift as well: developer, operations and quality assurance teams must 
work closely together. Typical IT companies do not have significant business boundaries between different teams, 
whereas such boundaries are not uncommon in telecommunication service providers (SPs). Today, network elements 
and functions are developed by vendors, deployed and operated SPs, with some parts of the network operated by 
sub-contractors. Figure 1 illustrates the SP-DevOps service lifecycle and highlights technical processes shared by 
different roles, namely Verification, Observability, and Troubleshooting, which address this shift and further challenges 
[2][5][9]. We define the following SP-DevOps roles for this service lifecycle: 

 Service Developer assembles the service graph for a particular service category, similar to the traditional 
operator role 



 VNF Developer implements virtual NFs (VNFs) and would be associated to the traditional equipment vendor 
role in today’s terms 

 Operator ensures that a set of performance indicators associated with a service are met when the service is 
deployed on the SDI. 

 

 

Figure 1: SP-DevOps processes and roles in the telecom service lifecycle. 

3.1 Pre-deployment Service Verification  
SP-DevOps relies on repeatable and reliable processes, calling for automated service verification as an integral part 
of the deployment processes. Identifying problems early in the service/product lifecycle increases availability and 
significantly reduces time and cost spent on debugging and troubleshooting tasks. For telecommunication service 
definitions and configurations this is especially true due to the high spatial distribution and the lower levels of 
infrastructure redundancy in an operator environment compared to centralized DCs. 

The first SP-DevOps process we introduce is pre-deployment service verification based on formal methods, which 
can prove that the involved functions fulfill certain properties, thus addressing the objectives of agility, elasticity, and 
programmability for the envisioned service model. Service verification employs VNF models that can be combined to 
build a formal service description, ensuring generality and supporting dynamic service definitions. In essence, network 
services described by NF-FGs involving multiple VNFs are translated into sets of formulas that can be analyzed and 
verified. 

Our realization benefits from Z3 [10] and leverages an earlier VNF verification engine [11] to create an engine compliant 
with the SDI objectives. We focus on model scalability to guarantee fast (“on-the-fly”) verification, which is still detailed 
enough to completely capture VNF behavior. For this, we complement the VNF model catalog with more complex, 
previously unsupported VNFs (i.e., active VNFs that alter packets). Specifically, we developed models for active VNFs 
including Network Address Translation (NAT), Virtual Private Network gateway, and web-cache, as well as additional 
models of currently unsupported passive VNFs, like antispam filter. As a result, SP-DevOps service verification applies 
to a wide range of dynamic service graphs. 



3.2 Observability Through Scalable Monitoring  
In SP-DevOps we employ software-defined monitoring (SDM) designed to meet a number of goals. Firstly, the design 
should provide accurate and scalable monitoring both in large scale geographically distributed WAN and centralized 
DC scenarios. Secondly, it should be able to quickly trigger reactions on monitoring results locally for increased 
scalability. Thirdly, network dynamics, such as migration of VNFs and associated monitoring functions (MFs), should 
be supported. Finally, it should allow for distributed, programmable data processing following SDN principles. 
Altogether, we devise SDM to effectively meet the elasticity, orchestrated assurance and infrastructure validation 
objectives. 

Figure 2 illustrates the main SDM components: a) MFs that can aggregate and process data at high rates and produce 
reliable monitoring results; b) multi-level aggregation with distributed and programmable aggregation points able to 
combine multiple metrics and forward results and/or trigger reactions; and c) a flexible, distributed and carrier-grade 
messaging system that routes monitoring results and other messages between entities. By combining these three 
components we can reduce load on the control/management planes and react locally while avoiding transmitting 
high-rate monitoring results over WAN connections. 

 

Figure 2: Software defined monitoring components in a programmable infrastructure. RateMon serves as a local 
observability point and DoubleDecker (DD) provides a hierarchical messaging architecture. 

An MF performs lightweight node-local aggregation, processing and analytics to fulfill the monitoring goals for the 
service component (e.g. measurement intensity and duration). An MF is implemented by one or several Observability 
Points (OP) and an MF control app. An MF control app is the SDM equivalent of an SDN controller, i.e. a logically 
centralized measurement control plane configuring OPs and performing parts of the processing. OPs run locally on 



the infrastructure nodes and implement functionality for performing measurements and lightweight data processing. 
MF monitoring results are sent to the closest aggregation point, typically on the same node. Aggregator points expose 
a simple API used by the management layers to configure the desired aggregation method and triggering thresholds. 
Multiple metrics can be combined, evaluated, and forwarded to higher layers or local control components when 
certain thresholds are met. 

In line with the SDM design goals, we implemented RateMon [12], an MF that probabilistically models link utilization 
for assessing the risk of congestion at various time scales. RateMon can quickly detect symptoms of persistent micro-
congestion episodes with no communication overhead as it does not require forwarding raw measurements for 
further processing. Moreover, DoubleDecker [13], a multi-tenant distributed messaging system, provides connectivity 
between MFs, aggregation points, and higher layer entities. DoubleDecker keeps messages local when possible and 
provides a simple messaging API with a publish/subscribe mechanism for distributing monitoring results and a 
notification mechanism for targeted messages such as alarms. 

3.3 Automated Troubleshooting 
Troubleshooting involves a series of hypothesis tests in which the troubleshooter repeatedly analyzes results of one 
test and decides whether another hypothesis needs to be tested, leading to a consecutive test by possibly a different 
debugging tool. Today such steps are performed manually by support teams and in practice are time-consuming, 
costly, and error-prone. Automation can reduce the time spent on troubleshooting incidents but in SDIs must be 
combined with the NF-FG and its mapping to the underlying virtualized infrastructure, which is often not fully exposed 
to service or VNF developers. 

SP-DevOps automated troubleshooting addresses this by facilitating fault management and service chain debugging 
at large scale. Automated troubleshooting invocation includes the specification of a troubleshooting template, which 
states the troubleshooting steps and rules, the type of tools used along with their respective configurations, and 
specifications on how to report troubleshooting results. Troubleshooting is controlled by a function that executes the 
template instructions using available system functions and interfaces. High-level troubleshooting processes of varying 
complexity can therefore be implemented for different purposes without knowing the particular details of the 
underlying SDI. Such processes are easier to maintain and develop compared to complex functions that fully integrate 
multiple traditional and SDN-specific troubleshooting tools. 

SP-DevOps automated troubleshooting is exemplified by EPOXIDE [14], a lightweight framework for testing 
troubleshooting hypotheses that enables ad-hoc creation of tailor-made testing methods from predefined building 
blocks. Troubleshooting personnel employ EPOXIDE to write and execute troubleshooting graphs (TSGs) that define 
the interconnectivity of individual debugging/troubleshooting tools. Writing a TSG is faster than typing similar CLI 
commands, but more importantly the EPOXIDE high-level language hides particularized technical details from the 
personnel (e.g., actual IP addresses) and provides reusable troubleshooting recipes. Moreover, EPOXIDE allows 
inserting decision logic into TSG nodes instead of just connecting different low-level tools by piping the output of one 
tool into the input of the other. Decision nodes can analyze outputs and decide where to forward them. As a result, a 
TSG can test more than just one troubleshooting hypothesis, and can further automate the troubleshooting process 
by executing decision trees as we will see in the following section. 



4 SP-DevOps in Practice  

We take a virtual Customer Premises Equipment (vCPE) as an illustrative SDI deployment example. The vCPE service 
is specified as a graph (NF-FG) of security and performance acceleration VNFs chained together with a firewall 
providing NAT and access control list (ACL) functionality. Figure 3 is a high-level system overview, with hosts in a 
private network communicating via vCPE service components to servers located in the Internet. Forwarding rules are 
configured such that email and web traffic is forwarded to an anti-spam function and a web cache, respectively, 
before reaching its destination server through the firewall. 

 

 

(a) 

 

(b) 

Figure 3: vCPE service chain with Elastic Firewall: (a) Service NF-FG, and (b) Chain extraction for service verification. 



We consider an elastic firewall as a dynamically scalable network element. It is “elastic” as it supports different scaling 
approaches triggered by continuous monitoring of certain conditions, e.g. infrastructure resource utilization, changes 
in user patterns, and so on. In this paper we consider horizontal scaling, i.e., scaling by adding further virtual resource 
instances on scale-out.  

We model the elastic firewall as a sub-NF-FG comprising load balancing functions, dynamically instantiated firewall 
data plane elements, and an elastic firewall control app (Figure 4). The elastic firewall scales out/in by an action of the 
control app adding or removing firewall elements to the service chain, realized on resources requested from the 
orchestrator. Moreover, the control app instruments the load balancer elements that precede the firewall data plane 
elements to forward traffic according to dynamically configured flow rules. 

The three SP-DevOps processes described in Section 3 support the roles of Operators as well as VNF and Service 
Developers throughout the lifecycle of an elastic firewall during both service deployment (i.e. fulfillment) and 
assurance phases, as explained next. 

4.1 Service Deployment 
Figure 4 illustrates the SP-DevOps processes applied to the vCPE case. Service deployment starts with a tenant/user 
employing service management interfaces to request a service graph as per step (1), which describes the ordered 
interconnection of abstract NFs and their corresponding KPIs. In the orchestrator, the abstract NFs are translated into 
concrete VNF components including implementation version, placement definitions, and connectivity configurations. 

In step (2), SP-DevOps service verification (Section 3.1) is invoked. In case of dynamic service chains including elastic 
functions, verification takes place before the initial service deployment as well as before scale in/out updates of the 
NF-FG by the orchestrator. Specific requests are verified before actually deployed let alone executed in the production 
environment. If service verification fails, the request is rejected and sent back to service management, where it can 
be refined or canceled. If the service and VNF definitions with their corresponding configurations are valid, the request 
is forwarded to the infrastructure layer in step (3), where VNF control and data plane components are deployed on 
the assigned network and compute resources. Pre-deployment verification is a quality assurance mechanism for the 
Operator in the deployment phase. In the vCPE case, verification ensures that firewall and NAT configuration are 
correct and that correctness is maintained throughout scaling operations. 

In order to evaluate SP-DevOps verification, we consider the vCPE NF-FG shown in Figure 3a. As a first step, three 
separate VNF chains are extracted (Figure 3b): 

 Chain 1 employs an anti-spam function, NAT and ACL; 

 Chain 2 is composed by a web cache, NAT and ACL; 

 Chain 3 uses only the NAT and ACL firewall functionalities. 

Our service verification tool currently offers verification of reachability and isolation properties, i.e., whether a network 
configuration can ensure that a given node is reachable, or whether specific traffic never reaches a given node, 
respectively. The tool internals and the specific steps it performs with respect to reachability verification are described 
in [15]. Concerning isolation, it is worth noticing that this can be seen as the logical complement of reachability, which 
is actually the property that our tool currently uses to also verify isolation policies.  



 

 

Figure 4: NFV use-case of an elastic firewall and SP-DevOps processes embedded in the UNIFY NFV architecture – 
an architecture which is in conformance with ETSI NFV, as indicated in the left part of the figure. 

For the vCPE use-case, we consider both reachability and isolation properties during pre-deployment verification to 
evaluate the impact of verification on the overall deployment time. In particular, given two different ACL 
configurations that should either allow or block traffic flows, we verified whether the three servers are actually 
reachable or isolated, respectively. In chains 1 and 2, the verification of the isolation property must be followed by a 
further verification step ensuring that server unreachability is indeed due to the ACL configuration rather than a result 



of the anti-spam or web cache function. This is done by iterating verification of a reachability property between the 
clients and the firewalls on the paths. Our results indicate that the average time to verify reachability properties is less 
than 50 ms, with a maximum verification time of 200 ms. The average time to verify isolation properties (including 
the extra reachability tests) is less than 80 ms, with a maximum time of 310 ms. This is in line with SP-DevOps goals 
to support agile and elastic service deployment with on-the-fly verification of service requests/updates. With only 
negligible overhead, service verification can significantly reduce the number of trouble incidents, as it prevents 
erroneous and untrustworthy behaviors of the system ahead of deployment. 

4.2 Service Assurance 
4.2.1 Continuous Monitoring  
Highly dynamic firewall elasticity requires very frequent status updates about service components such as load 
balancing and firewall data-plane instances. To support this requirement, we employ SDM for continuous monitoring 
(Section 3.2). Monitoring components are deployed and configured automatically alongside the NF-FG components 
(step (4) in Figure 4) based on a) monitoring intents derived from the KPIs and b) requirements specified in the service 
graph definition. In the vCPE case, RateMon monitors network resource utilization. 

MFs continuously collect status information about the service VNFs, and transfer the results using DoubleDecker. In 
case of performance degradation, the firewall control application decides on suitable elasticity operations and SDM 
notifies the orchestrator to trigger resource scaling in step (5). An updated NF-FG with new firewall instances resulting 
from a scale-out operation is automatically considered by the monitoring system which instantiates further RateMon 
instances. The DoubleDecker pub/sub interface provides the Operator with fast triggers for service elasticity 
mechanisms, and the Service Developer with status metrics for logging and SLA reporting purposes, as well as for 
triggering troubleshooting processes. 

Besides dynamicity and programmability, SDM offers significant scalability and resiliency benefits. Following the 
distributed nature of service provider networks, SDM distributes the monitoring functionality (transport and storage 
of results, processing, and alarm generation) to reduce network overhead as well as the dependency and load on 
centralized components. Comparing the flow of information in SDM to centralized monitoring with equivalent 
functionality, such as OpenStack Telemetry, highlights the difference: In the vCPE case, traffic rate sampling at all the 
ports of up to 20 firewall instances at 100 Hz results in 4000 samples/s. In a centralized solution, this would translate 
into 4000 events/s that have to be stored, processed, and reacted upon by central components. With SDM, samples 
are first reduced by a factor of 100 by RateMon’s probabilistic parameter estimation and then processed by the local 
analytics engine. The local analytics engine decides whether other components need to be informed, for example by 
sending an alarm to the firewall control application. The control application in turn decides what action should be 
taken locally or requesting additional resources from the orchestrator. Centralized components are invoked only once 
per scale-out/in leading to several orders of magnitude fewer events that need to be handled centrally. These savings 
are crucial when considering large operator networks providing a large number of clients with many services in 
parallel, all of which are continuously monitored for multiple performance metrics. 

4.2.2 On-demand Troubleshooting  
A VNF Developer or Operator may decide to debug a specific VNF or troubleshoot the complete service NF-FG once 
continuous monitoring results raise a troubleshooting incident (step (6) in Figure 4). Automated troubleshooting 
employing EPOXIDE will instrument a set of monitoring and debugging tools (step (7)). TSGs may include legacy 



networking tools, such as ping or iperf, next to complex SP-DevOps tools [2]. For instance, the elastic router control 
app can be verified using-black box testing to analyze the behavior of the entire NF-FG or white-box testing by logging 
into the control app container and debugging the app itself. Both approaches are supported. 

Assume that SDM reports increased response time in web requests. After an initial investigation, a service developer 
suspects that automatic resource scaling is the culprit. The developer writes a TSG (Figure 5) that uses the traffic-
generator node to overload the firewall. While running the traffic generator, the developer can observe key network 
characteristics, for example how many VNF instances are deployed for selected VNF types, or the load of the 
WebCache-NAT link, which helps to determine whether the hypothesis is true. This method is not only faster 
compared to testing the hypothesis using traditional command line tools, but also less error-prone, because the 
process is described without particular details such as exact locations of the WebServer and WebClient. 

 

Figure 5: Example Troubleshooting Graph (TSG) for the elastic firewall scenario. 

Further measurement metrics (e.g., CPU load, memory use, etc.) may be additionally necessary to decide about 
hypotheses, so a TSG can be extended to collect information from many tools to decide on further hypotheses. For 
example, if the CPU load of the firewall VNFs are unbalanced, the Load Balancer might require debugging; if the link 
load is high, but the number of VNFs is not increasing, the Control App might be debugged instead. If the decision logic 
is expressed e.g., by a numerical formula, then a troubleshooter can configure a decision node and form a (partial) 
decision tree from individual hypothesis tests. As a result, one manual troubleshooting session can be turned into an 
automated test written especially for this service graph, thereby decreasing the execution time from hours to minutes. 
Moreover, subsequent occurrences of similar issues can be addressed by re-invocation of the TSG by less trained 
personnel without any particular knowledge of special purpose tools used. 

4.3 SP-DevOps Assessment  
We assess the overall value of SP-DevOps in two ways: quantitatively, by estimating the potential of the described SP-
DevOps processes in terms of OPEX savings; and qualitatively, by contrasting SP-DevOps and related frameworks with 
the objectives introduced in Section 2. 
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4.3.1 OPEX Savings 
Admittedly it is difficult to estimate the direct OPEX savings resulting from wide scale adoption of SP-DevOps since 
an openly available OPEX model for SDIs is not available. Instead, we discuss OPEX savings based on how SP-DevOps 
components could address large categories of incidents which today cause service interruptions. According to the 
2014 ENISA Annual Incident Reports, 44% of significant telecom network incidents were caused by software bugs; 
19% by network overload; 10% by faulty software changes or updates; and 10% by faulty policies or procedures. Based 
on the ENISA data we derived a model, including the average duration of incidents, to determine the impact of SP-
DevOps processes. Notably, integrated service verification during deployment reduces the number of incidents caused 
by faulty policies and software bugs. Scalable, continuous SDM shortens the duration of incidents via fast error 
discovery, and our specific example of RateMon can significantly decrease operational costs and lost revenues related 
to network overload incidents. Finally, automated troubleshooting can decrease repair times for most incidents types. 

In a conservative scenario only a low percentage (about 30%) of addressable incidents could be avoided. In an 
optimistic scenario, a high percentage (around 80% for some relevant categories, such as faulty software changes 
and procedure faults) could be addressed. For incidents related to both fixed and mobile Internet connectivity, the 
optimistic scenario would record about 70%-80% savings in terms of reduced incident occurrence and length, which 
translate into significant OPEX savings for operators, as well as additional benefits due to reduced customer churn 
and increased network uptime. Due to space considerations, interested readers are referred to the publicly available 
technical report [2] which details the model and the scenarios. 

4.3.2 Comparison with Related Initiatives 
We revisit the frameworks presented in Section 2 and evaluate how SP-DevOps fulfills the following objectives: 1) 
address carrier-network management, 2) satisfy key characteristics associated to programmability, 3) fulfill 
infrastructure validation, 4) ability to perform service verification, and 5) provide orchestrated assurance. 

Table 1 summarizes our analysis of SP-DevOps in the context of the vCPE service use case. We conclude that SP-
DevOps supports service agility and elasticity well. We acknowledge that processes such as billing and charging are 
not directly addressed by SP-DevOps, but consider them out of scope for this work since they can be adapted from 
traditional, standardized processes [3],[4]. SP-DevOps supports infrastructure validation although at the time of this 
writing with a limited number of tools. Integration of further monitoring and diagnostic SP-DevOps tools is ongoing as 
discussed in [2]. Further, service verification is currently updated with capabilities to verify against additional 
properties and policies. Finally, SP-DevOps provides orchestrated assurance of network services due to the integration 
of deployment and assurance processes. 

5 Summary  
Carrier networks will evolve at a faster pace due to new networking paradigms such as SDN and NFV, which enable 
telecom operators to use programmable network service function chains. In this context, new network management 
challenges arise, which cannot be addressed by today’s common practice and employed techniques. By combining 
network programmability with NF APIs we can leverage techniques from the software engineering realm to define 
carrier-grade network management in the virtualization era. 



Service Provider DevOps addresses said challenges via three integrated technical processes, namely verification, 
observability, and troubleshooting. We presented a set of tools that each represents an advancement in the state of 
the art in its area while at the same time serving as a building block for the three integrated SP-DevOps processes. 
We considered an industry-standard use case, namely a modern vCPE service with an elastic firewall, as an illustrative 
example that confirms the feasibility of our integrated approach. We showed that on-the-fly verification of service 
definitions and configurations before actual deployment is practically feasible and performant as it reduces the 
number of incidents while introducing negligible overhead. Software-defined monitoring supports dynamic and 
elastic observability of deployed services and offers carrier-grade scalability. A novel framework enables automatic 
instrumentation of monitoring, verification and debugging tools, thereby decreasing troubleshooting times from 
hours to minutes. 

SP-DevOps processes are executed by different actors/roles during a service lifecycle, thus establishing a common 
vocabulary and work routines that foster a DevOps-like approach for managing telecom infrastructure. Our simplified 
quantitative model points to savings of up to 80% in terms of OPEX costs with respect to the number of incidents and 
repair times. Our qualitative analysis confirms high compliance of SP-DevOps with respect to key objectives, enabling 
a carrier to address many network management challenges in the emerging network virtualization era. Moving 
forward, our ongoing efforts include the definition of metrics to evaluate service performance SP-DevOps tools. 
Moreover, we are enhancing SP-DevOps with further observability, diagnostic and verification tools and capabilities 
targeting the application of SP-DevOps in real carrier networks and large-scale deployments. Finally, we are 
contributing to ongoing efforts at IETF [5] addressing DevOps challenges in telecommunication SDIs. 
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