
Scalable Software Defined Monitoring
for Service Provider DevOps

Wolfgang John, Catalin Meirosu
Ericsson Research, Sweden

Email: first.lastname@ericsson.com

Bertrand Pechenot, Pontus Sköldström
ACREO, Sweden

Email: {berpec,ponsko}@acreo.se

Per Kreuger, Rebecca Steinert
SICS, Sweden

Email: {piak,rebste}@sics.se

Abstract—Technology trends such as Cloud, SDN, and NFV
are transforming the telecommunications business, promising
higher service flexibility and faster deployment times. They also
allow for increased programmability of the infrastructure layers.
We propose to split selected monitoring control functionality
onto node-local control planes, thereby taking advantage of
processing capabilities on programmable nodes. Our software
defined monitoring approach provides telecom operators with a
way to handle the tradeoff between high-granular monitoring
information versus network and computation loads at central
control and management layers. To illustrate the concept, a link
rate monitoring function is implemented using node-local con-
trol plane components. Furthermore, we introduce a messaging
bus for simple and flexible communication between monitoring
function components as well as control and management systems.
We investigate scalability gains with a numerical analysis, demon-
strating that our approach would generate thousandfold less mon-
itoring traffic while providing similar information granularity as
a naive SNMP implementation or an OpenFlow approach.

I. INTRODUCTION

Recently, there have been many innovations in computer
networking. SDN breaks the traditional all-in-one network
equipment by separating control from data plane. Network
virtualization techniques allow service providers to slice infras-
tructure resources, enabling a flexible deployment of new net-
work technologies. The evolution of Cloud computing makes it
possible to merge physically distributed facilities into a united
logical resource. Taken together, the emerging software defined
“everything” (networks, compute infrastructure, etc.) paradigm
promises a high level of flexibility and programmability, al-
lowing telecom operators to elastically reallocate the infras-
tructure resources of running services. With Network Function
Virtualization (ETSI NFV), Telecom providers seek to exploit
advances in virtualization techniques in order to allow creation
of large-scale network services in an agile, seamless and
cost-effective manner. As an evolution of this trend, the EU
FP7 UNIFY project [1] sets out to integrate modern cloud
computing and networking technologies by considering the
entire network as a unified service production environment,
joining the vast networking assets and data centres of Telecom
providers in the same management model. By allowing the
agile deployment of new services with seamless instantiation
across the entire infrastructure, UNIFY will extend the capa-
bilities of existing NFV technologies.

UNIFY also acknowledges the need for simplified and
automated management processes required for future software
defined telecommunications environments. In particular, the
integration of capabilities that are related to observability,

troubleshooting and verification of service components and
physical resources is crucial for service providers to im-
prove the cost-efficiency of maintenance, resiliency, and agile
deployment of services. Inspired by the DevOps paradigm
popular in modern data centers, in UNIFY we refer to these
capabilities collectively as Service Provider DevOps.

On one hand, orchestration and control layers in soft-
ware defined “everything” architectures are more than ever
in need of capabilities that allow determination of up-to-date,
accurate and detailed descriptions of infrastructure utilization
and performance of virtual network functions. On the other
hand, existing monitoring approaches, such as counter-based
monitoring via OpenFlow, impose a centralized client-server
communications and thus suffer scalability limitations in the
face of highly distributed assets as given in current telecom-
munications environments.

In this paper, we first introduce the UNIFY Service
Provider DevOps (SP-DevOps) concept (Section II). We will
then discuss how software defined monitoring, as a key part of
SP-DevOps, can be realized by taking advantage of processing
capabilities on future programmable infrastructure nodes. In
Section III, we specifically address scalability limitations by
defining a control-data plane split for monitoring functions
(MFs) and introducing a scalable bus for communicating
between monitoring function components and other entities
in control, orchestration, and management layers. Section IV
presents a rate monitoring function as an example of a split
MF, and Section V describes the messaging bus in detail. We
numerically discuss the scalability gains of software defined
monitoring in Section VI, before we conclude the paper in
Section VII.

II. SP-DEVOPS CONCEPT

UNIFY aims to reach a high level of agility for service
innovation by providing dynamic service programming and
orchestration, deploying logical service components (i.e. vir-
tual network functions - VNFs) across multiple network nodes.
The UNIFY architecture follows SDN principles with a logi-
cally centralized control and orchestration plane. Additionally,
compute, storage and network abstractions are combined into
a joint programmatic interface referred to as Network Function
Forwarding Graph (NF-FG). An NF-FG defines a selected
mapping of VNFs and their forwarding overlay definition into
the virtualized resources presented by the underlying layer.
In order to enable “processing anywhere”, another essential
goal of UNIFY is the development of a highly programmable
network node, called Universal Node (UN). An UN is built on



standard COTS (commercial off-the-shelf) hardware platforms
(e.g., x86) to provide an execution environment for advanced
VNFs, while still meeting carrier-grade network requirements
in terms of performance and availability.

To cope with the high service velocity dynamicity enabled
by UNIFY, we consider a novel management and operation
paradigm for Service Providers, called Service Provider Dev-
Ops - SP-DevOps [2]. Modern agile software development and
operations methods, so far applied primarily in data centre
environments (collectively called DevOps), constitute a good
source of inspiration for future NFV-inspired telecom carrier
environments, specifically when rapid and flexible service
deployment is targeted as in UNIFY. In SP-DevOps, we follow
the same major underlying principles as identified for DevOps
[3]: i) Monitor and validate operational quality; ii) Develop
and test against production-like systems; iii) Deploy with
repeatable, reliable processes; and iv) Amplify feedback loops.

Technical aspects associated to these principles reflect on
processes and associated tools for monitoring, validating and
testing software and programmable infrastructure. While we
acknowledge that DevOps has a crucial cultural dimension (re-
flected barely by Amplify feedback loops), our work focuses on
technical aspects in terms of tools and infrastructure support.

Even if significant parts of the telecommunication networks
are foreseen to be virtualized in the future, we identified
important characteristics of telecommunication networks that
differ from traditional data centres, i.e.:
• Higher spatial distribution, as telecom resources are

spread over wide areas due to coverage requirements
• Lower levels of redundancy in access and aggregation

networks compared to the massive data centers of
typical cloud computing companies

• Stronger requirements on high availability and latency
in according to standards and customer expectations

These differences pose new challenges on DevOps prin-
ciples applied in telecommunications environments. For in-
stance, operator networks put stricter demands on ongoing
verification of service definitions and configurations due to
higher failure costs associated with high spatial distribution
and lower levels of redundancy. Also scalability of observ-
ability is a major issue in logical and highly geographically
distributed operator infrastructures (Section III).

SP-DevOps addresses these and further challenges [2],
[4] with a set of technical processes supporting developer
and operator roles in a virtualized telecom network. Figure
1 illustrates the relation between SP-DevOps processes and
the developer/operator roles by means of a service creation
lifecycle. The four SP-DevOps processes follow the DevOps
principles to meet specific challenges regarding Observability
and Troubleshooting (Principle: Monitor and validate opera-
tion quality); Verification (Principle: Deploy with repeatable,
reliable processes); and Development (Principle: Develop and
text against production-like systems).

We also identified three main roles involved in the pro-
cesses: the Service Developer, who assembles the service graph
for a particular category of services similarly to the more
classical operator role; the VNF Developer, who programs
virtual network functions and is associated to the classical

Fig. 1. SP-DevOps cycle for UNIFY service creation

equipment vendor role; and, the Operator, whose role is to
ensure that a set of performance indicators associated to a
service are met when the service is deployed on a virtual
infrastructure within the domain of a telecom provider.

One of the main SP-DevOps solutions developed in UNIFY
is a reference implementation of an integrated monitoring func-
tion (MF). In the following section we will outline this generic
concept of software defined monitoring, which adresses scal-
ability issues typically associated with the aforementioned
characteristics of telecommunication networks.

III. SOFTWARE DEFINED MONITORING

UNIFY proposes an architecture and related interfaces and
abstractions to jointly orchestrate and control both network and
distributed cloud infrastructure with the promise of increased
service agility and flexibility in service deployment. In order
to cater for dynamic service management at short time-scales
as well as for reliable operations of large-scale networks,
the orchestration and control layers are more than ever in
need of capabilities that allow determination of up-to-date,
accurate and detailed description of the utilization of the
infrastructure and the performance of VNFs executing within
the environment. However, capabilities for extracting fine-
grained monitoring information are currently not sufficiently
supported in existing solutions. Our earlier review of SDN
and cloud management literature [4], [5]1 revealed a number
of open issues for management of such an highly distributed
service creation platform. First, the generic approaches of
embedding counter-based monitoring capabilities and notifica-
tions in control and management protocols such as OpenFlow
and SNMP, or container monitoring tools exposing REST
APIs, have scalability and resource-efficiency limitations re-
lated to frequent and fine-grained observability updates from
many distributed nodes. This has negative consequences for
time-critical management operations, such as early detection
of performance degradations and fast mitigation of network
failures. Secondly, we identified the need for programming in-
terfaces that enable tools to exchange rich diagnostic data in a
systematic manner with control, orchestration and management
components in order to support higher degrees of automation.

In order to meet carrier grade requirements, the need to
perform certain management functions in a distributed fashion
close to the data-plane has been discussed earlier in [6].

1 [5] contains a state of the art review of 30+ tools with a focus on SDN
and cloud monitoring, troubleshooting, verification, testing and debugging.



The concept of partially decentralized control applies to most
fault/performance management tasks in a dynamic and widely
distributed environment as service-aware provider networks.

In this paper we present a software defined monitoring
solution consisting of two parts:

i) A Monitoring Function (MF) reference implementation,
realizing software defined monitoring by defining a
control-data plane with infrastructure-level Observability
Points (OPs) (Section IV). Note that the proposed control-
data plane split assumes advanced programmability and
processing capabilities offered by programmable nodes.

ii) A scalable and flexible messaging bus for communication
between MFs, their OPs and other entities in control,
orchestration and management layers (Section V).

Our approach extends node capabilities such that certain
monitoring, verification and troubleshooting functions can be
performed locally at the node - yet still under control of
logically centralized control applications. Such MFs are of
average complexity - more than a counter, but less complex
than big data analytics. This enables high-granular monitoring,
aggregation, filtering, and (pre-)processing of measurements
(e.g. light-weight statistical analysis), as well as representation
of monitoring information in a compact form (e.g. parame-
ter estimates). Such approach can significantly increase the
network observability and ensure minimal fault detection and
reaction times, while minimizing network and controller load,
thereby solving a major scalability problem.

Before going into more detail about an example MF the
messaging bus for monitoring data, we will introduce the
general concept of our software defined monitoring solution
assuming a generic programmable nodes.

Monitoring components

To address the scalability and observability challenges, we
introduce the software defined monitoring functions consisting
of the following components (Fig. 2):

Monitoring functions (MFs) typically implement functional-
ity for collecting resource (CPU, memory, and storage) and
network performance metrics (e.g. link delay, jitter and loss).
MFs may not only collect data, but also pre-process monitoring
information (e.g. aggregate, filter, etc.) from other MFs across
one or several UNs. An MF is implemented as one or several
Observability Points (OP) and an MF control app.

An MF control app is the software defined monitoring equiv-
alent to SDN control apps, i.e. it is a logically centralized
control application taking care of the configuration of OPs
and parts of the processing to be performed within the scope
of the MF.

An observability point (OP) is a MF component that runs
locally on the UNs. In general, the implementation of OP capa-
bilities encompasses measurement or verification mechanisms,
node-local aggregation and analytics, as well as communica-
tion between OPs, depending on the type of the MF. The OP
operates in terms of a local control plane (LCP) and local data
plane (LDP).

The LCP is splitting certain control functionality from the
MF control app for scalability and resource consumption

Fig. 2. Overview of the components for local monitoring in programmable
nodes. The DoubleDecker bus and its brokers are depicted in solid blue,
DoubleDecker clients have blue frames.

purposes. It reflects essentially a local monitoring controller
which provides functions for retrieving data from the LDP;
processes obtained data; and controls the monitoring behavior
(e.g. measurement intensity).

The LDP is basically any kind of data source in the infrastruc-
ture node (e.g. statistics from logical switches, resource metrics
from the VNF executing environment, hardware counters,
meters, injected packets, log data, etc.), retrievable from the
virtualized environments, the OS or the hardware.

A messaging bus enables information exchange between LCPs
within one UN and between LCP and their MF control apps,
as well as between MFs, and with other entities in control,
orchestration and management layers (logging DB, analytics
engine, etc.).

IV. IN-NETWORK MONITORING AND TROUBLESHOOTING
WITH LOCAL CONTROL PLANE COMPONENTS

In this section, we detail an implemented example of a
monitoring function following the software defined monitoring
constructs introduced in section III. The link utilization and
rate MF is able to implement a scalable congestion detector [7]
based on the analysis of the rate distribution on individual
links at several time scales. For this purpose, we employ a
statistical method for node-local analytics based on the use of
two byte counters for storing the first and second statistical
moment (s1 = Σxi/n, s1 = Σx2i /n) where each xi represents
either the size of a single packet, or another high rate update
of the byte throughput. Assuming a log-normal distribution for
the observed rates, the parameters of the distribution can be
estimated from the statistical moments:

{
µ̂ = lnM − 1

2 σ̂
2

σ̂2 = ln (1 + V
M2 )

(1)



where M and V are the sample mean and variance. Once the
estimates are obtained, the cumulative density function (CDF)
can be used for detecting increased risks of link overload by
inspecting the percentiles.

Existing approaches (e.g. SNMP [8] and sFlow [9]) nor-
mally involve forwarding of raw measurement information to
dedicated monitoring equipment for further processing, which
impacts the scale at which monitoring can be efficiently per-
formed and thereby the overall network observability. For this
reason, standard practice for identifying increased bandwidth
consumption is based on low-frequency counter inspections
and reporting when the average exceeds a fixed threshold.
Using such low-resolution averages often leads to missed
congestion episodes as well as false alarms, as these averages
usually are far below the link capacity and determination of
suitable detection thresholds is difficult.

In contrast, local querying of counter statistics (i.e. in an
LCP) at high rates enables high accuracy in the captured
aspects of the traffic behaviour, with significantly lower over-
head compared to processing raw measurements at a dedicated
monitoring station. By varying the querying frequency, high-
granularity monitoring information can be provided to manage-
ment layers in a flexible and scalable manner and in a compact
form as parameter estimates, without the cost of constant high
rate sampling of the counters. Reporting of parameter estimates
enables efficient dissemination of rich statistical information
about the observed traffic rate behavior that can be further used
for analytic or predictive purposes. By inspecting the CDF of
the obtained parameter estimates the risk of congestion can be
predicted at varying time scales. For efficient troubleshooting,
the predicted risk is a significantly more robust indicator of
persistent congestion than the average traffic rate.

The approach has been initially evaluated [7] with respect
to estimation error and congestion detection rate at varying
time scales in a stand-alone simulator framework implemented
in Scala, using data from 1Gb/s and 10Gb/s links. Using a
naive congestion detector based on the CDF, yields a success
rate of over 98% when detecting episodes of high congestion
risk at 0.3 s using estimates captured at 5 m intervals.

Implementation on programmable nodes

The rate monitoring MF control app operates on a ded-
icated (SDN) controller while the OP (LCP+LDP) operates
locally in a network node. The control app forwards incoming
monitoring information and configuration requests to the active
OP. Resulting monitoring information is pushed on the Dou-
bleDecker bus (Section V) to directly notify a receiver (e.g. a
elastic network function), to publish on the sub/pub interface,
or to be stored in a (distributed) monitoring or logging DB.

A rate monitoring MF may consist of one or several OPs
depending on the monitoring needs. For one OP, the node-
local statistical modeling takes place in the LCP (see Figure
2) and is based on the reading of two counters in the LDP, for
storing the first and second statistical moments. This deviates
from the current practice of using a single counter for each
of the byte and packet rates, and hence the available set
of counters in virtual switches needs to be extended with
corresponding sum-of-squares counters. The only additional
high rate operation required to compute and store the second

moment is one multiplication, one addition and one write to a
(long) integer register. An additional counter slightly increases
the LDP overhead, but enables accurate and light-weight
node local modeling at lower rates via method-of-moments
estimates, which can also be reported to the management layers
in a scalable and compact form. The LCP also implements
functions for reading LDP counters. Depending on the scope
of monitoring, this can be done in different ways: for example,
if the LDP is an OpenFlow (OF) switch, the LCP acts as a
mini controller using the OF protocol to retrieve OF counters;
alternatively, for monitoring physical NICs, file access (such
as /proc in the Linux operating system) or access to shared
memory can be used to access counters by an LCP process.

The rate monitoring tool supports the SP-DevOps concept
by its technical design, which offers a scalable approach to
increased network observability based on node-local modeling
of counter data with low computational complexity. The statis-
tical model that we use can be applied for autonomous service
and network management, including troubleshooting support
and dynamic resource management.

V. DOUBLEDECKER: A FLEXIBLE AND SCALABLE
MESSAGING BUS

As mentioned, there are numerous challenges for efficient
monitoring in the context of SDN. A way to reach a good
observability while limiting performance impairments is the
distribution of data treatment close to the measurement points,
so that data could be aggregated and processed without im-
posing all the overhead on a central controller.

The DoubleDecker messaging bus has been designed to
provide a scalable system for easily integrating different mon-
itoring functions, and transporting their results. It is routing
messages between connected applications, allowing point-to-
point synchronous and asynchronous communication, as well
as providing a lightweight publish/subscribe interface.

A main problem the messaging bus is trying to solve is to
provide a simple and easy to use transportation mechanism
for the various monitoring functions. As these monitoring
functions can be quite different in their complexity and im-
plementation, the solution should be easy to apply in a range
of scenarios (e.g. counters read by an SDN Controller, dae-
mons running on a distributed node, dynamically instantiated
VMs, etc.). Additionally, it should be easy to use in dynamic
and changing environments as envisioned in UNIFY, where
functions may migrate and scale-in/out depending on various
factors such as incoming traffic load. Finally, it should be easy
to implement support for the messaging system in the clients,
and to integrate with existing systems. For these reasons we
have chosen to implement the DoubleDecker messaging bus as
a protocol running on top of the ZeroMQ messaging library.
ZeroMQ implements the ZeroMQ Message Transport Protocol
in a C library with bindings and native implementations
available for many languages (currently more than 20). While
ZeroMQ does not support many features of more complex
messaging system out of the box, it can be tailored for many
scenarios. ZeroMQ is also attractive since it is designed with
scalable and low-latency messaging in mind. The core of
ZeroMQ is a set of socket abstractions, similar to traditional
BSD sockets for UDP and TCP, which provide the building
blocks for creating various messaging patterns.



The bus consists of two components, brokers and clients,
both implemented on top of the ZeroMQ library. The brokers
are responsible for routing messages between the clients,
and can be connected to each other in a hierarchical, tree-
like, fashion. Messages between clients connected to different
brokers will take the shortest path through the tree structure,
off-loading more central brokers by keeping messages as local
as possible. A client connects to the closest broker (e.g. a
broker running on the same machine) using a simple protocol
and one of the supported transport protocols. In a data center
thousands of clients can be deployed without overloading the
link toward a central controller. They can join or leave the bus
dynamically meeting scalability and flexibility requirements.

A client registers itself with a name which will be its
unique identifier. Identifiers are independent of the network
address so clients can be moved completely transparently for
other clients, with no other configuration needed. Dynamic
migration and scaling of VNFs as envisioned by UNIFY is thus
supported very effectively by the DoubleDecker bus, which
absorbs much of the complexity. The initial configuration is
also simplified as locally unique IP addresses can be used.
Keeping messages local is recommended for efficiency but
this is not a limitation. Local nodes can also communicate
with higher layer components which in a SDN network can
be physically far away.

The local access to the bus allows partitioning robustness.
If a part of the bus is isolated, messaging between two clients
connected locally to the same broker will work transparently.
The broker will survive and periodically try to reconnect with
the higher level. Even a local failure disconnecting the client
to its broker is not too damaging, the clients will have the
same behavior as the brokers and try to reconnect. Temporary
caching can be used to prevent message loss.

The clients have minimal knowledge of the actual architec-
ture and are fitted for specific tasks. The clients have to follow
a standardized protocol to communicated with the bus and have
to define their own sub-protocol to communicate with other
clients. The main protocol defines the way clients and brokers
communicate. Clients must implement the functions allowing
the identification in the bus as well as the heartbeat mechanism.
The client has to check periodically if the broker is still
running. Inversely, the broker will not initiate any messaging
but will periodically delete the clients who have been quiet for
too long. Apart from this the client can extend the protocol to
communicate with other clients with very specialized tasks.
A lot of work has been put into keeping this integration as
simple as possible. As the bus has a tree-like topology, inter-
broker communication is required. The main task of the broker
is to route messages through the architecture. In the case of
two local clients the forwarding is trivial. Otherwise the broker
forwards the message to the upper broker. Brokers implement
the same heartbeat mechanism as between clients and brokers.

When connected, the clients can use the four simple
functions listed in the Table I to communicate with each other.
Any other functionality is up to the developer or user to
implement. For instance in the case of the rate monitoring
function (Section IV), the rate monitoring algorithm has been
embedded in a client able to transmitting the calculated values
to other components.

TABLE I. EXAMPLE OF DOUBLEDECKER CLIENT FUNCTIONS

Function Purpose
send(id, data) Client-to-Client transmission of data to Client id.
[id, data] = receive() Receive data from name, Client-to-Client.
subscribe(topic) Subscribe to messages beginning with prefix

topic. A subscription for topic A receives e.g.
messages published both on topics A and ABCD.

publish(topic, data) Publish message in the topic with prefix topic.

In addition to the basic functionality, we have implemented
a publish/subscribe mechanism. Clients can subscribe to pub-
lication lists so they receive all the messages sent on this list.
Groups can be formed according to the usage of the client or
the physical location for instance. The messaging capabilities
remain the same as for the peer to peer communication. Again
the brokers hide most of the implementation challenges to keep
the client simple to use and extend.

With the client side of the protocol being relatively simple,
it is easy to implement in any of the supported languages. It
is also easy to extend the client modules to act as a proxy to
existing tools, e.g. integration with a REST API can be done
in just a few lines of code. Implementations in Python3, C and
Java exist to show the modularity of the bus and demonstrate
the reference implementation.

In an earlier demonstration [10], we used the Python3
version to connect MFs with a load-balancer SDN app and
a database. For increased performance, we have since imple-
mented and tested the performances on a C version. With a
simple set-up we can reach 1Gb/s (limit of the link used).
To reach this rate we send messages as big as 1MB to
minimize the time spend resolving the route and maximize
the throughput. If we instead send small messages, we can
currently reach 130k messages per second. Even in the case
of a very accurate monitoring e.g values sent every ms, the
bus should not be the bottleneck.

We have also shown that DoubleDecker can be integrated
inside Docker containers [11]. Docker allows sharing direc-
tories between containers, making it possible to share files
for inter process communication, removing the need for IP
addressing. Containers can be linked together to share environ-
ment variables or expose ports to each other. Embedding the
components of the bus in containers allows a better portability
and security by isolating them from the host machine. If the
containers are moved, the same properties apply, no extra
configuration will be needed in other clients messaging the
container VNF.

VI. DISCUSSION

A functional verification of our software defined monitor-
ing concept has been demonstrated in [10]. In this demo, earlier
versions of the messaging bus and rate monitoring function
have been combined with a rudimentary configuration tool and
an OpenFlow control plane verification mechanism. Via the
DoubleDecker bus, link rate data was efficiently logged in a
time-series database. Detected link congestions automatically
triggered a load balancing mechanism.

To provide an initial assessment of the scalability gains
by software defined monitoring (realized as a combination of
rate monitoring and DoubleDecker messaging), we developed
a simple model to compare the amount of transmitted messages



TABLE II. MESSAGE/DATA RATE COMPARISON OF RATEMON AND DOUBLEDECKER (DD) WITH SNMP AND OPENFLOW (OF) BY SAVING FACTORS

Solution Read Rate (/sec) Message Rate (/sec) Saving SNMP Saving OF Bandwidth (Mb/s) Saving SNMP Saving OF
SNMP 1000.0 822600000 627594
OpenFlow Multipart 1000.0 193054000 602465
RateMon 0.3 246780 3 ∗ 103 0.7 ∗ 103 154 4 ∗ 103 3.9 ∗ 103

RateMon + DD server-level aggr. 1.0 51413 16 ∗ 103 3.7 ∗ 103 49 13 ∗ 103 12.3 ∗ 103

RateMon + DD rack-level aggr. 1.0 1072 770 ∗ 103 180.0 ∗ 103 49 13 ∗ 103 12.3 ∗ 103

and data with respect to a standard SNMP-based option and an
standard OpenFlow-based option. As a reference network, we
take a data center with 1000 server racks, 48 servers per rack,
4 virtual switches executed within each server and 4 ports for
each of the virtual switches. The network fabric is a classic
three-tier architecture, with Top-Of-the-Rack switches of 52
ports (48 downlinks and 4 uplinks), 48-port switches in the
second tier and 100-port switches in the third tier. We assume
that all network ports from both virtual and physical switches
are being monitored. To estimate the message overhead, we
account only for VXLAN encapsulation along with IPv4, UDP
headers. The SNMPv3 header with no SNMP context and 1
byte for message security parameters is counted as part of the
overhead of the SNMP solution. For OpenFlow, we considered
the OpenFlow v1.5 header with multipart replies and the port
statistics replies to a request that uses the OF ANY option to
aggregate the counters from all the ports of a switch in one
message. All counters transmitted are considered to be 64-bit
long in order to support high-speed interconnects. The data
read and message rates were chosen in line with the RateMon
results from [7].

For the sake of simplicity, we assume that DoubleDecker
implements an addressing and context scheme identical to
the SNMP Scoped PDU, and thus disregard this part of
the message from the overhead calculation. Table II presents
the results of the estimate, and shows that a naive SNMP
implementation would generate 4000x - 13000x more data
onto the network to provide essentially the same information
as the combination of Rate Monitoring and DoubleDecker.
Compared with OpenFlow with multipart aggregation, our
proposal provides similar large improvements in terms of band-
width usage. The aggregation within DoubleDecker reduces
the message rate by a factor of 5x to 230x compared to the
direct dissemination of Rate Monitoring results, depending
on where the aggregation is performed, even though we
increased the results read rate by 3x for timeliness purposes.
One server connected on a Gigabit Ethernet connection could
thus very comfortably handle the amount of data generated
by the Rate Monitoring and transmitted with DoubleDecker,
with significant network and compute capacity left to perform
other tasks. In addition to capacity for handling a very high
message rate, both the SNMP and OpenFlow-based solutions
would require significant compute resources to calculate the
rate estimate from massive amounts of raw data.

VII. CONCLUSIONS

The UNIFY project integrated modern cloud and network-
ing technologies by considering the entire infrastructure as
one unified service production environment. This will offer
telecom providers a fully virtualized, programmable service
creation platform enabling fast and dynamic service inno-
vation. Besides a unified service orchestration and program-
ming architecture, UNIFY focused on SP-DevOps, a novel
management paradigm designed to cope with the increased

service dynamicity. One challenge is to provide up-to-date,
accurate, and detailed monitoring information to orchestration
and control layers in a scalable way. We proposed a software
defined monitoring approach, defined a control plane split for
monitoring functions, and introduced a scalable bus for com-
municating between MFs and higher control layers. We used
the example of a link rate monitoring function to show how
the processing capabilities provided by programmable network
infrastructure allow delegation of selected MF functionality
to local control plane components. Software defined monitor-
ing with our messaging bus enables node-local aggregation
and pre-processing of measurement results, providing telecom
operators with a way to handle the tradeoff between high-
granular observability and network/compute resources load
at central control/management layers. Our numerical analysis
shows that our software defined rate monitoring generates
only a tiny fraction of the monitoring traffic from comparable
SNMP and OpenFlow implementations, while providing the
same information granularity.

ACKNOWLEDGMENT

The authors would like to thank Fulvio Risso and Juhoon
Kim for valuable discussions. The research leading to these
results has received funding from the EU Seventh Framework
Programme under grant agreement nr. 619609 (UNIFY).

REFERENCES

[1] A. Csaszar, W. John, M. Kind, C. Meirosu, G. Pongracz, D. Staessens,
A. Takacs, and F.-J. Westphal, “Unifying cloud and carrier network: Eu
fp7 project unify,” in IEEE/ACM UCC’13, 2013.

[2] J. Kim, C. Meirosu, I. Papafili, R. Steinert, S. Sharma, F.-J. Westphal,
M. Kind, A. Shukla, F. Nemeth, and A. Manzalini, “Service provider
devops for large scale modern network services,” in IFIP/IEEE IM’15,
BDIM Workshop, 2015.

[3] S. Sharma and B. Coyne, ”DevOps for Dummies”. IBM limited
edition, 2013.

[4] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind, A. Manzalini,
F. Risso, D. Staessens, R. Steinert, and C. Meirosu, “Research directions
in network service chaining,” in IEEE SDN4FNS’13, 2013.

[5] W. John and C. Meirosu, “Unify d4.1: Initial requirements for the sp-
devops concept, universal node capabilities and proposed tools,” 2014,
online: https://www.fp7-unify.eu/index.php/results.html#Deliverables.

[6] J. Kempf, E. Bellagamba, A. Kern, D. Jocha, A. Takacs, and P. Skold-
strom, “Scalable fault management for openflow,” in IEEE ICC, 2012.

[7] P. Kreuger and R. Steinert, “Scalable in-network rate monitoring,” in
IFIP/IEEE IM’15), 2015.

[8] R. Presuhn, “Management information base (MIB) for the simple
network management protocol (SNMP),” 2002, RFC 3418, Internet
Engineering Task Force.

[9] P. Phaal, S. Panchen, and N. McKee, “Inmon corporations sflow: A
method for monitoring traffic in switched and routed networks,” RFC
3176, Tech. Rep., 2001.

[10] F. Nemeth, R. Steinert, P. Kreuger, and P. Skoldstrom, “Roles of
devops tools in an automated, dynamic service creation architecture,”
in IFIP/IEEE IM’15, Demo Session, 2015.

[11] F. Moradi, B. Pechenot, and J. Martensson, “Monitoring transport and
cloud for network functions virtualization,” in EWSDN’15 demo session,
2015, video online: https://vimeo.com/130979415.


