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Characterization and Classification of Internet Backbone Traffic

Wolfgang John

Department of Computer Science and Engineering, Chalmers University of Technology

ABSTRACT

We contribute to an improved understanding of Internet traffic characteristics by measuring

and analyzing modern Internet backbone data. We start the thesis with an overview of sev-

eral important considerations for passive Internet traffic collection on large-scale network

links. The lessons learned from a successful measurement project on academic Internet

backbone links can serve as guidelines to others setting up and performing similar mea-

surements. The data from these measurements are the basis for the analyses made in this

thesis. As a first result we present a detailed characterization of packet headers, which

reveals protocol-specific features and provides a systematic survey of packet header anoma-

lies. The packet-level analysis is followed by a characterization on the flow-level, where

packets are correlated according to their communication endpoints. We propose a method

and accompanying metrics to assess routing symmetry on a flow-level based on passive

measurements. This method will help to improve traffic analysis techniques. We used the

method on our data, and the results suggest that routing symmetry is uncommon on non-

edge Internet links. We then confirm the predominance of TCP as the transport protocol

in backbone traffic. However, we observe an increase of UDP traffic during the last few

years, which we attribute to P2P signaling traffic. We also analyze further flow character-

istics such as connection establishment and termination behavior, which reveals differences

among traffic from various classes of applications. These results show that there is a need

to make a more detailed analysis, i.e., classification of traffic according to network appli-

cation. To accomplish this, we review state-of-the-art traffic classification approaches and

subsequently propose two new methods. The first method provides a payload-independent

classification of aggregated traffic based on connection patterns. This provides a rough traf-

fic decomposition in a privacy sensitive way. Second, we present a classification method

for fine-grained protocol identification by utilizing statistical packet and flow features. Pre-

liminary results indicate that this method is capable of accurate classification in a simple

and efficient way. We conclude the thesis by discussing limitations in current Internet mea-

surement research. Considering the role of the Internet as a critical infrastructure of global

importance, a detailed understanding of Internet traffic is essential. This thesis presents

methods and results contributing additional perspectives on global Internet characteristics

at different levels of granularity.
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1
Introduction

Today, the Internet has emerged as the key component in personal and commercial commu-

nication. One contributing factor to the ongoing expansion of the Internet is its versatility

and flexibility. In fact, almost any electronic device can be connected to the Internet these

days, ranging from traditional desktop computers, servers and supercomputers to all kinds of

wireless devices, embedded systems, sensors and even home equipment. Accordingly, the

usage of the Internet has changed dramatically since its initial operation in the early 1980s,

when it was a research project connecting a handful of computers, facilitating a small set of

remote operations. Today (2010), the Internet serves as the data backbone for all kinds of

protocols, making it possible to interact and exchange not only text, but also voice, audio,

video, and various other forms of digital media between hundreds of millions of nodes.

Traditionally, an illustration of the protocol layers of the Internet pictures an hourglass,

with a single Internet Protocol (IP) on the central network layer and an increasingly broader

spectrum of protocols above and below. Since the introduction of IP in 1981, a protocol that

is basically still unchanged, technology and protocols have developed significantly. Un-

derlying transmission media evolved from copper to fiber optics and wireless technologies,

routers and switches became more intelligent, and are now able to handle Gbit/s instead

of Kbit/s, and additional middleware devices have been introduced (e.g., Network Address

Translation boxes and firewalls). Above the network layer, new applications have also con-

stantly been added, ranging from basic services such as the Domain Name System (DNS)

and HyperText Transfer Protocol (HTTP), to recent complex peer-to-peer (P2P) protocols

allowing applications for file sharing, video streaming, and IP telephony. With the introduc-

tion of IPv6, even the foundation of the Internet, IP, is finally about to be substituted.

This multiplicity of protocols and technologies leads to a continuous increase in the

complexity of the Internet as a whole. Of course, individual protocols and network infras-

tructures are usually well understood and tested in isolated lab environments or simulations.

However, their behavior as observed while interacting with the vast diversity of applications

and technologies in the Internet environment is often unclear, especially on a global scale.

3



4 CHAPTER 1. INTRODUCTION

This lack of understanding is further amplified by the fact that the topology of the In-

ternet was not planned in advance. The current Internet topology is the result of an unco-

ordinated extension process, where heterogeneous networks of independent organizations

have been connected one by one to the main Internet (INTERconnected NETworks). As a

consequence, the Internet today is built up of independent, autonomous network systems,

where each autonomous system (AS) has its own set of usage and pricing policies, quality

of service (QoS) measures and resulting traffic mix. Thus, the usage of Internet protocols

and applications is not only changing over time but also with geographical locations [1].

Finally, higher connectivity bandwidths, growing numbers of users and increasing eco-

nomical importance of the Internet also lead to an increase in misuse and anomalous be-

havior [2]. Not only do the numbers of malicious incidents continue to rise, but also the

level of sophistication of attack methods and available tools. Today, automated attack tools

employ advanced attack patterns and react on the deployment of firewalls and intrusion de-

tection systems by cleverly obfuscating their malicious actions. Malicious activities range

from host- and port-scanning to more sophisticated attack types, such as worms and various

denial of service attacks. Unfortunately, the Internet, initially meant to be a friendly place,

eventually became a very hostile environment that needs to be studied continuously in order

to develop suitable counter strategies.

For the reasons mentioned above, network researchers and engineers currently have lim-

ited understanding of the modern Internet, despite its emergence as a critical infrastructure

of global importance [3]. We identified a number of important open questions that Internet

measurements help to answer. We grouped them into four rough categories:

(i) Scalability and sustainability issues regarding fundamental Internet services, includ-

ing routing scalability, AS level topology evolution, IP address space utilization, DNS

scalability and security;
(ii) Internet performance, e.g., the impact of new protocols and applications on Internet

performance characteristics such as per-flow throughput, jitter, latency and packet

loss/reordering;
(iii) Evolution of Internet traffic, such as traffic growth trends, protocol and application

mix at different times and different locations;
(iv) Network security, including anomaly detection and mitigation of network attacks and

other unwanted/unsolicited traffic, such as email spam, botnet and scanning traffic.

Given the possibility to collect Internet traffic data on a wide-area network backbone link,

this thesis addresses the latter two categories. We also discuss methodological aspects of

passive Internet measurement and data collection, which form the basis for our results.

Specifically, the thesis sets out to provide a better understanding of the modern Internet
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by presenting current characteristics of Internet traffic based on a large amount of empir-

ical data. We claim that it is crucial for the Internet community to understand the nature

and detailed behavior of modern network traffic. A deeper understanding would support

optimization and development of network protocols and devices, and further improve the

security of network applications and the protection of Internet users.

1.1 Organization

The thesis is based on a collection of published papers, where reprints of the papers are

appended in Part II. Part I provides the introductory summary. In Chapter 1 we present the

main topics of the thesis by introducing traffic characterization and classification. We dis-

cuss Internet measurement in general, define the thesis objectives and discuss limitations of

the obtained results. Chapter 2 describes the MonNet project, which provided the collection

framework for most of the network data analyzed in this thesis. This chapter includes a

description of the measurement location, the technical solution for data collection, the anal-

ysis procedures and a summary of the resulting datasets. Chapter 3 provides an overview

of related measurement projects and lists publicly available datasets and data sharing ap-

proaches. Chapter 4 groups the papers listed in Part II into a logical structure and provides

a short summary of each paper. In Chapter 5 we list the main thesis contributions and

summarize our findings. Chapter 6 concludes the thesis with general lessons learned and

a discussion of the status quo of the research field and its continuing struggle with issues

regarding data sharing and access.

1.2 Analysis of Internet Data

Before discussing issues surrounding passive collection of Internet data traces, we want to

introduce the main topic of this thesis: a general characterization of backbone traces on

the packet and flow-levels. We continue with a discussion of traffic classification methods,

which can complement traffic characterization efforts by providing insight into the type

of traffic analyzed.

1.2.1 Traffic Characterization

We define traffic characterization as the analysis of Internet data resulting in a description

of traffic properties. These properties can range from the features of aggregate network

traffic (e.g., flow size distribution [4]) to detailed features of single packets and flows [5].

Specifically, traffic characterization in this thesis covers a detailed, fine grained traffic anal-

ysis of packet and flow-level data. Since the Internet is a moving and continually evolving
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target [6], some of our results revise or update previous studies that are based on outdated

data sets collected years ago. Most results in this thesis are based on contemporary data

from a previously unstudied measurement location on the Internet and hence contribute to a

global picture of current Internet traffic characteristics.

Our packet-level characterization reveals general traffic properties such as packet size

distribution and transport protocol breakdown and also shows the current deployment of

protocol-specific features such as IP and TCP options and flags (Paper II), which is rele-

vant input to Internet simulation models [7]. Our packet analysis furthermore includes a

systematic listing of packet header anomalies together with their frequencies as seen “in

the wild” on the observed Internet backbone links (Paper III), which provides an empiri-

cal background for the development and refinement of traffic filters, firewalls and intrusion

detection systems. Furthermore, we believe that knowledge of such detailed Internet traffic

characteristics can help researchers and practitioners in designing networked devices and

applications and in improving their performance and robustness.

Flow-level analysis aggregates individual packets into flows, which can provide addi-

tional insights into traffic characteristics. We propose a method and accompanying metrics

to assess routing symmetry flow measurements from a specific link, and the results suggest

that routing symmetry is uncommon on non-edge Internet links. We then confirm the pre-

dominance of TCP as transport protocol in backbone traffic, but note an increase of UDP

traffic during the last few years. These results verify common assumptions about Internet

traffic, which are often embedded into traffic analysis or classification tools [8–10]. Conse-

quently, the results can impact advanced Internet analysis efforts and provide further mea-

surement support for Internet modeling. We also provide a detailed analysis of TCP flows

to reveal network properties such as connection lifetime, size and establishment/termination

behavior (Paper VI). The results of this flow analysis highlight the need for traffic classi-

fication according to application as a next step towards a better understanding of Internet

traffic behavior. The following analysis of classified traffic reveals trends and differences

in connection properties of Internet traffic and shows how different classes are behaving

“in the wild” (Paper VII). These results enable the Internet community to see how current

transport protocols are utilized by application developers, facilitating the improved design

of network devices, software, and protocols.

1.2.2 Traffic Classification

We define traffic classification as the analysis of Internet data resulting in a decomposition

of the traffic according to network applications/application layer protocols or classes thereof

(e.g., bulk, interactive, WWW, etc. [11]). In other words, the goal of traffic classification
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is to understand the type of traffic carried on Internet links [12–14]. Traffic classification

results can be useful for traffic management purposes (such as QoS and traffic shaping

mechanisms [15]) and traffic engineering purposes (such as optimization of network de-

sign and resource provisioning). Furthermore, understanding the type of traffic carried on

networks supports security monitoring by facilitating the detection of illicit traffic, such as

network attacks and other security violations. Modern firewalls, NAT boxes, and Intrusion

Detection Systems (IDSs) need to be able to reliably classify network protocols in order to

implement fine grained and secure access policies. Apart from the apparent interest of oper-

ators and researchers in understanding trends and changes in network usage, there have also

been a number of political and legal discussions about Internet usage, further highlighting

the need for accurate traffic classification methods. These political discussions include the

ongoing debate between intellectual property representatives1 and the P2P file sharing com-

munity2 [16, 17]. There are also network neutrality discussions between Internet Service

Providers (ISPs) and content providers3 [15, 18, 19].

Historically, network applications have been designed to use well-known port numbers

to communicate with servers or peers, making traffic classification relatively straightfor-

ward. However, in the early 2000s, developers of upcoming file sharing applications (e.g.,

KaZaA [20]) started to deviate from the standard behavior by using dynamic port numbers,

thus diminishing the accuracy of port-based classification [11, 21, 22]. Since then, there has

been an ongoing arms race between application developers trying to avoid traffic filtering or

classification, and operators, network researchers, and other institutions interested in accu-

rate traffic classification (Paper VIII). Researchers first used static payload examination to

classify applications using unpredictable ports [11, 22–24], an approach also used in com-

mercial tools [25, 26]. Application developers then reacted by using proprietary protocols

and payload encryption, which means that modern traffic classification methods cannot rely

solely on port number information and static payload signatures [8, 24, 27]. In Paper IX

we propose a payload independent classification method for aggregated Internet backbone

data. Paper X presents an alternative classification method utilizing statistical flow and

payload features.

1.3 Internet Measurement

Before we could perform offline analysis of Internet traffic, we had to set up a measure-

ment infrastructure to collect Internet data. Packet-level data collection on large-scale net-

1For example the Recording Industry Association of America (RIAA).
2For example The Pirate Bay.
3These include commercial companies such Google and Yahoo, as well as the P2P file sharing community.
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work links, however, is a non-trivial task (Paper I). One reason for the difficulties is the

rapid and decentralized development of the Internet on a competitive market, which his-

torically has left both little time and few resources to integrate measurement and analysis

possibilities into Internet infrastructure, applications and protocols. Traditional network

management therefore relies on aggregated measurements from individual nodes, such as

SNMP Statistics (Simple Network Management Protocol [28]) and statistics of sampled

flow data [29, 30] (e.g., flow counts and flow throughputs, size and duration distributions).

However, we claim that we in addition need complete, fine grained data in order to obtain

a comprehensive and detailed understanding of the modern Internet. Empirically measured

Internet datasets constitute an important data source for different purposes:

• Scientific purpose: Analysis of actual Internet traffic provides much needed input for

scientific simulation and modeling [7]. Ongoing measurements will also reveal longi-

tudinal trends and changes in the usage of network applications and protocols, and thus

foster improvement and development of network protocols and services. Finally, secu-

rity measures should ideally be based on a profound understanding of traffic properties

and should rely on fast and reliable methods to detect unwanted traffic and network

anomalies. We therefore consider modern, real-life datasets vital for the network re-

search and development community in order to be able to react to changes in traffic

properties and behavior (for both benign and malicious reasons) in a timely fashion.

• Operational purpose: While traditional network management tools based on SNMP

or Netflow [29] mainly cover critical operational requirements for ISPs, such as trou-

bleshooting and provisioning, more advanced traffic engineering tasks (such as QoS

measures and traffic shaping) often rely on classification tools and techniques based

on packet-level data [15]. Not only the development, but also the validation of these

techniques requires modern traffic traces collected by measurement infrastructures. In-

ternet measurements can also be the basis for refinement of network design and pro-

visioning, design of robust protocols and infrastructure, and improvement of network

performance and accounting. Furthermore, Internet measurements reflecting network

behavior as seen “in the wild” support security measures, such as refinement of rule

sets for traffic filters, firewalls, and network intrusion detection systems [31].

• Legal purpose: Monitoring and measurement of Internet traffic are also of increasing

legal relevance, as manifested in the recently ratified data retention directive of the

European Union [32], requiring communication providers to retain connection data4

4Connection data here include type, source, destination and timing information for communication including

Internet access, web and mail activities.
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for periods of up to two years with the purpose of enabling network forensics. Im-

plementations of these types of regulations can directly benefit from the achievements

of the Internet measurement community, offering experiences in the non-trivial task

of efficient collection and analysis of large amounts of traffic. However, such privacy

sensitive regulations also evoke discussions about their ethical implications [33, 34].

1.3.1 Internet Measurement Approaches

We categorize network measurement approaches based on different dimensions, as dis-

cussed in Paper I. In the following paragraphs we briefly outline the five most important

axes and, at the same time, highlight the approaches taken to collect that data for this thesis:

• Active vs. passive measurement approaches: Active measurement involves injecting

traffic into the network to probe certain network devices (e.g., ping) or to measure

network properties such as Round Trip Times (RTT), one-way delay and maximum

bandwidth. Passive measurement or monitoring based on pure observation of net-

work traffic is non-intrusive and does not change the existing traffic. Network traffic

is tapped at a specific location and can then be recorded and processed at different

levels of granularity, from complete packet-level traces to only a statistical summary.

In this thesis we apply a passive measurement approach to provide analysis of Internet

backbone traffic properties.

• Software-based vs. hardware-based measurement: Passive measurement tools based

on software modify operating systems and device drivers on network hosts to ob-

tain copies of network packets (e.g., BSD packet filter [35]). In contrast, hardware-

based methods are designed specifically for collecting and processing network traffic

on high-speed links such as an Internet backbone. Custom-built hardware collects

traffic directly on the physical links5 (e.g., by using optical splitters) or on network

interfaces (e.g., mirrored router ports). Specifically, for our measurements we used

a hardware-based measurement infrastructure applying optical splitters and Endace

DAG cards [36] capable of collecting unsampled, complete packet traces on links with

transmission speeds of up to 10 Gbit/s.

• Online vs. offline processing: Online processing refers to immediate processing of

network data in “real time”, which is essential for applications such as traffic filters

and intrusion detection systems. Offline processing, on the other hand, is performed on

network data after it is stored on a data medium. Offline processing is not time critical

5Internet measurement can also be performed on wireless networks. However, wireless measurement tech-

niques are beyond the scope of this thesis and will therefore not be discussed.
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and offers the possibility to process, compare, and validate network traffic collected

at different times or different locations. Furthermore, stored network data can be re-

analyzed on the basis of different criteria. Because of these advantages, we chose

offline processing for the packet and flow-level characterization presented in this thesis,

since they include complex and time-consuming analysis.

• Data granularity: The coarsest granularity is provided by aggregate traffic summaries

and statistics, such as packet counts or data volumes, typically provided by SNMP.

Another common practice is to condense network data into network flows. A flow can

be described as a sequence of packets exchanged between common end points, defined

by certain fields within network and transport headers (e.g., TCP connections). Packet-

level traces provide the finest level of granularity, which can include all information of

each packet observed on a specific host or link. Thus, they implicitly include the infor-

mation contained in less granular data. Since packet-level traces furthermore offer the

best analysis and validation possibilities, we chose to use packet-level measurements

as raw data.

• Sampled vs. unsampled data collection: Given the large amount of data on modern

high-speed links, a method for reducing it is to sample data instead of recording all the

data observed (i.e., unsampled data collection). Sampling can be done on a packet and

flow-level. Basic sampling approaches include count or interval-based systematic sam-

pling (i.e., in static intervals, e.g., recording every Nth packet/flow), random sampling

(i.e., in random intervals), and stratified sampling (i.e., sampling different subpopula-

tions independently). More sophisticated packet sampling approaches have also been

proposed, such as adaptive packet sampling [37]. Good overviews of sampling and

filtering techniques for passive Internet measurement can be found in Zseby et al. [38]

and Duffield [39].

The packet traces used in this thesis were collected to enable a range of different anal-

ysis tasks. However, when packet-level traces are collected without having an exact

analysis in mind, sampling is difficult to apply because it requires a very deliberate

choice of the sampling strategy to make sure that no sampling bias is introduced. While

there are successful sampling techniques for inference of many packet and flow statis-

tics, some characteristics cannot be accurately estimated based on sampled data. As

an example, Mai et al. [40] showed that current sampling techniques introduce funda-

mental bias when used for detection of network anomalies such as volume anomalies

and port scans. In this thesis, we decided to take advantage of our capability to collect

complete, unsampled packet-header traces.
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1.4 Thesis Objectives

As pointed out in this chapter, there are various reasons why we need to understand the

nature and detailed behavior of Internet traffic. The datasets used in this thesis (mainly

collected within the MonNet project, introduced in Chapter 2) allow investigation of Internet

traffic characteristics on Internet backbone links. The overall objective of this thesis is:

Improving the understanding of Internet traffic characteristics

by measuring and analyzing modern Internet backbone data.

More specifically, this thesis sets out to answer the following research questions:

Question 1: What are the main challenges in passive data collection on large-scale net-

work links and how can we manage these challenges?

Question 2: How can packet header traces be used to analyze and characterize traffic from

large-scale networks?

Here we concentrate on the following three subquestions:

a. What traffic characteristics and what types of inconsistent traffic behavior can

be revealed through the analysis of packet header information?

b. Are common assumptions about transport protocol usage and traffic symmetry

valid when actually investigated using empirical data?

c. Can differences between classes of network traffic be found by analyzing de-

tailed connection properties of TCP flows?

Question 3: Can we find effective methods for classifying modern network traffic based on

network application in order to support traffic characterization efforts?
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1.5 Thesis Limitations

While this thesis contributes to a better understanding of Internet traffic characteristics,

we want to note some constraints regarding the results that are caused by deficiencies in

the raw data:

• The results provided are snapshots of Internet traffic from single vantage points dur-

ing a limited time period. Where possible, we complemented the MonNet datasets

with traces from other measurement locations (i.e., US traces from CAIDA), but the

snapshot character remains. We acknowledge that modern Internet traffic is too hetero-

geneous to allow broad generalization of such results, which is a general limitation of

the research discipline of traffic analysis. However, the results contribute some addi-

tional perspectives on global Internet characteristics, which is important for identifying

trends and possible invariances when compared to other snapshots of different envi-

ronments. Furthermore, most methods and lessons learned are valid and applicable to

other Internet measurement and analysis projects, independent of the exact nature of

the network measured.

• The duration of the traffic traces collected within the MonNet project does not exceed

20 minutes due to hardware limitations of the measurement cards. Since Internet traffic

distributions are heavy-tailed and substantially composed of long-lived flows [4], we

were not able to provide a conclusive study of classical flow characteristics such as

flow duration and flow sizes. Instead, we deliberately decided to focus on detailed

packet-level characterization and flow characteristics such as connection establishment

and termination behavior.

• The backbone traces analyzed in this thesis are anonymized and contain no payload,

i.e., IP addresses have been anonymized in a prefix-preserving fashion (CryptoPAn [41])

and packets do not contain payload beyond transport layer protocols. These de-sensi-

tization tasks were required by an ethics committee to permit the MonNet research

to proceed. While anonymized packet header data enables a number of interesting

research tasks, they have some limitations regarding their utility. Anonymized IP ad-

dresses do not allow us to pinpoint and further investigate hosts with anomalous behav-

ior. Such investigations could include active measurements (e.g., Operating Systems

fingerprinting) or contacting site administrators (e.g., for manual inspection of misbe-

having servers). Missing payload also limits a number of further analysis possibili-

ties. Access to (full, or at least partial) packet payload would allow validation of non-

payload-based traffic classification results on solid ground truth. It would also facilitate
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very fine grained traffic classification and thus allow studies of isolated characteristics

of single applications. Payload data could furthermore enable studies of user behavior

to find better answers to questions such as “what are people using the Internet for?”,

which could yield results relevant not only for network research but also for social and

legal sciences. Other research topics benefiting from payload access include network

security related issues, such as anomaly detection. As a specific example, some mali-

cious activities are not visible through packet headers but are embedded in anomalous

payloads, e.g., code injection attacks. Investigations of botnet traffic and email spam

would also benefit from access to packet payload information, allowing researchers to

study detailed behavior and characteristics of the traffic. Finally, full packet payload

may provide ground truth for detection methods.
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2
Background - The MonNet Project

This chapter provides a description of the MonNet project, a project for passive Internet traf-

fic measurement conducted at Chalmers University of Technology. The goal of the project

is to support Internet traffic analysis by providing empirical data, i.e., passive measurements

of backbone links. Most results presented in this thesis are based on data collected within

MonNet. After giving some project background, including a description of the measure-

ment location, we present the technical solution of the MonNet measurement infrastructure

by describing the measurement nodes and the processing platform (Section 2.3). Finally,

we describe the pre-processing and analysis procedures of the resulting packet-level traces

in Sections 2.4, 2.5 and 2.6. Further experiences and lessons learned from this successful

project are discussed in Paper I.

2.1 Preparatory Tasks and Project Administration

In 2004, the Computer Communications and Networks group at Chalmers University pro-

posed a project regarding measurements of Internet traffic on the Swedish University Net-

work (SUNET) to the SUNET board. The board then required permission of the “central

Swedish committee for vetting ethics of research involving humans” (Etikprövningsnäm-

nden, EPN) in order to grant the project (which we in the reminder of this thesis refer

to as MonNet project). The Swedish EPN is among other things responsible for vetting

research that involves dealing with sensitive information about people or personal informa-

tion, equivalent to institutional review boards (IRB) [42] at US universities and research

institutions [43]. The EPN committee carries out ethical vetting in six regional boards,

where one of these boards is responsible for the region of Göteborg. After two meetings

and discussions about the de-sensitization process of the traces, the regional ethics commit-

tee finally permitted the MonNet measurements to take place under the conditions that user

payload is removed and IP addresses are anonymized (e.g., with CryptoPAn [41]).

The measurement and processing nodes applied have been planned and designed to

meet the anticipated requirements of packet-header measurements on Packet over SONET

15
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(PoS) Optical Carrier level 192 (OC192) links, i.e., links with line rates of 10 Gbit/s. Dur-

ing the planning phase, previous related measurement projects, such as NLANR PMA’s

OC48MON [44] and Sprint’s IPMON [45], provided valuable inspiration. The resulting

technical solution will be described in detail in section 2.3.

Even if we listed these preparatory tasks very briefly, it is important to note that they

required significant monetary costs and time expenses. The two types of costs are common

obstacles (besides privacy concerns of operators and their users) for passive large-scale

network measurements, as acknowledged by many members of the Internet measurement

research community [46]. The pure monetary costs of the MonNet measurement equipment

correspond to the employment costs for a researcher (e.g., a PhD student) over a substan-

tial time period. The following timeline of the project will highlight the additional time

investments required: The MonNet project was proposed to the SUNET board in sum-

mer 2004. After a waiting period for permission by the ethics committee, problems with

delayed delivery of crucial equipment and unexpected early hardware failures, the measure-

ment nodes were not in place and operational until fall 2005, more than one year after the

project began. It took another six months to gain experience in conducting sound Internet

measurement [47], when we finally could collect the first usable dataset in April 2006. After

2006, SUNET changed the topology and technology significantly, which rendered our pre-

vious measurement location inoperative. During 2007, SUNET focused on launching and

trouble-shooting the new network. In this time, SUNET staff was busy with many urgent

operational tasks. For the MonNet project this implied that the required operator support

for new data collection was not available until the operation of the new network had stabi-

lized. During summer 2008, SUNET had some time resources available again, so that the

measurement equipment could be re-installated at a new location.

2.2 Description of the Networks Measured

2.2.1 GigaSUNET

The first measurement traces we analyzed were collected on the previous generation of

the SUNET backbone network, called GigaSUNET [48]. GigaSUNET was officially in

operation until January 2007, when it was replaced by the current generation, called Opto-

SUNET [49]. The GigaSUNET backbone consisted of four core rings joining together at a

central Internet exchange point in Stockholm. Each ring used Cisco OC192 PoS technol-

ogy over Dense Wavelength Division Multiplexing (DWDM) channels to interconnect all

Points of Presence (POP), i.e., all university cities in Sweden. We illustrate the topology of

the internal GigaSUNET backbone in Fig. 2.1. Core routers (illustrated by circles) are fur-



2.2. DESCRIPTION OF THE NETWORKS MEASURED 17

Figure 2.1: Internal GigaSUNET topology with POPs displayed as two circles in order to indicate

the two core routers connecting that POP with the ones in the neighboring cities. The network ring

measured is colored in black. At the measurement point we collect data between the region of west-

ern Sweden (shaded in grey) and the main Internet outside Sweden (connected via a central Internet

exchange point in Stockholm). We observed the traffic to and from Chalmers (CTH), Göteborg Uni-

versity (GU), Halmstad University (HH), smaller research Institutes (other I.), the student dormitory

network (GSIX), and local ISPs via an Internet exchange point (GBGIX).
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thermore connected to an access network within the region, providing access to the SUNET

backbone for regional SUNET customers such as universities and student networks. We il-

lustrate the OC192 links connecting POPs as grey lines, with exception of the ring on which

the measurements were performed, which we colored in black. We collected the traffic

traces on the link between the cities of Göteborg and Borås, on the outermost part of the ring.

This means that traffic passing the ring between the region of Göteborg (the grey shaded

area) and the main Internet outside Sweden (peering with SUNET in Stockholm) was pri-

marily routed via the tapped link, taking Borås as the next hop. SNMP statistics confirmed

this behavior, showing that traffic amounts between Göteborg and Borås were an order of

magnitude larger than the amounts of traffic transferred between Halmstad and Malmö [50].

We collected backbone traffic on the OC192 (10Gbit/s) link (i.e., one measurement

card for each direction) at the measurement location between the core routers Göteborg

and Borås. The link measured provides the Internet backbone for two major universities,

Chalmers (CTH) [51] and Göteborg University (GU) [52], a substantial number of stu-

dent dormitories (GSIX) [53] and a number of research institutes and smaller universities

(other I.) such as Halmstad University (HH) [54]. Furthermore, around 14% of the collected

traffic is exchange traffic with a local Internet exchange point in Göteborg (GBGIX) [55],

providing peering between regional ISPs and SUNET. Thus, a significant part of the traf-

fic is transit traffic. Summarized, the resulting traffic traces constitute a medium level of

aggregation, between campus-wide traffic and tier-1 backbone traffic.

2.2.2 OptoSUNET

The ring architecture described above was during 2007 upgraded to OptoSUNET, a star

structure over leased fiber. OptoSUNET connects all SUNET customers redundantly to a

core network in Stockholm, as depicted in Fig. 2.2. While SUNET core routers are also

directly connected to smaller Swedish ISPs generating some local exchange traffic, the traf-

fic routed to the international commodity Internet is carried on two links between SUNET

and NORDUnet, with capacities of 40Gbit/s and 10Gbit/s respectively. NORDUnet peers

with Tier-1 backbone providers, large CDNs (Content Distribution Networks) and other aca-

demic networks. Since 40Gbit/s measurement equipment was economically unfeasible1, we

re-used the 10Gbit/s measurement infrastructure from GigaSUNET. We chose to collect on

the 10Gbit/s link with the highest possible level of traffic aggregation: the 10Gbit/s link

between SUNET and NORDUnet, indicated in black color in Fig. 2.2. According to SNMP

statistics [56], the applied load-balancing mechanism assigned half of all inbound but only

15% of the outbound traffic volume to the 10 Gbit/s link observed, and the rest of the traffic

1A 40Gbit/s measurement infrastructure essentially requires measurement equipment for 4x10Gbit/s links.
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to the 40 Gbit/s link. During July 2009 an additional 10 Gbit/s link in parallel with the

existing one was installed in order to keep up with increasing traffic volumes. We illustrated

this link as dashed line in the figure. Since this upgrade, the link observed carries about one

third of all the inbound traffic but still about 15% of the outbound traffic volumes.

Figure 2.2: OptoSUNET core topology. All SUNET customers are via access routers connected to

two core routers. The SUNET core routers have local peering with Swedish ISPs, and are connected

to the international commodity Internet via NORDUnet. SUNET is connected to NORDUnet via 3

links: a 40Gbit/s link and two 10Gbit/s links (one of them installed in July 2009). Our measurement

equipment collects data on the first of the two 10Gbit/s links (black) between SUNET and NORDUnet.

2.3 Technical Solution

In the following paragraphs, we briefly describe the hardware of the measurement and anal-

ysis infrastructure we used within the MonNet project. Section 8.3 of Paper I provides a

detailed and more technical discussion of the hardware solution. Our hardware includes

two measurement nodes and one additional processing platform. We use the latter as stor-

age, analysis platform, and database for the network traces collected on SUNET. We ap-
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ply optical splitters to tap the two OC192 links, one for each direction. With support

from SUNET operators we installed the splitters and attached them to two measurement

nodes on-site, which also pre-processed the traces (see Section 2.4). We always collected

traces simultaneously for both directions. For the final analysis, we transferred the network

traces to the processing platform at the Department of Computer Science and Engineering

at Chalmers University.

The two measurement nodes are designed and configured identically, and are based on

state-of-the-art hardware available during the design phase in 2004. Each optical splitter,

tapping either the inbound or outbound OC192 link, is attached to an Endace DAG6.2SE

card sitting in one of the measurement nodes. The cards are capable of collecting data

on PoS and 10Gbit-Ethernet links with bandwidths of up to 10Gbit/s. We configured the

cards to capture the first 120 bytes of each PoS frame to ensure that the entire network

and transport header information is preserved. During pre-processing of the traces we then

removed the remaining payload fractions for each packet.

After data collection and completion of the pre-processing procedures on the measure-

ment nodes, we transferred the resulting traces to the storage and processing server located

in the secured server room of the department. Besides storage of packet-level traces, the

processing platform with external storage also houses a MYSQL database system, which

we used for organizing the results obtained by the different analyses of the raw traces, as

described in Section 2.6.

2.4 Trace Pre-processing

After storing the truncated data packets on the disks of the measurement nodes, we de-

sensitized and sanitized the traces in offline fashion. Batch jobs carried out the de-sensitization

and sanitization immediately after collection of the traces, in order to minimize the storage

time of unprocessed and privacy sensitive data. We describe the pre-processing steps in

detail in Section 8.4 of Paper I, but the following paragraphs provide a brief overview.

By trace de-sensitization we mean the removing of sensitive information to ensure pri-

vacy and confidentiality according to the requirements of the ethics committee. We did this

by removing packet payload, which we define as all data following transport layer head-

ers. As a next step, we anonymized IP addresses in the IPv4 headers based on the prefix-

preserving CryptoPAN [41]. Throughout all MonNet measurements campaigns we used a

single, unique encryption-key to allow us to track specific hosts and IP ranges between all

measurements. Note however that CryptoPAN has its weaknesses and can be subject of

de-anonymization attacks [57, 58], which we further discuss in Section 4.2.2 of Paper I.
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Trace sanitization refers to the process of ensuring that the collected traces are free from

logical inconsistencies and are suitable for further analysis [45, 47]. We applied sanity

checks before and after each de-sensitization process. A detailed list of the sanity checks

can be found in Section 8.3.4 of Paper I, where we differentiate between three types of

errors: Major errors; minor errors; and errors with unknown severity.

In the common cases, when no inconsistencies or errors were detected, the original,

unprocessed traces were deleted upon completion of the pre-processing procedures, and we

kept only de-sensitized and sanitized versions of the traces. Sanity checks for major errors

included examination of frame types, IP version numbers, DAG timestamps, and inspection

of critical internal error counters and log files of the DAG card. While we did not encounter

any cases of packet loss or truncation reported by the DAG cards, about 3% of the traces

recorded showed garbled trace data or packet arrival rates of zero after a certain time. We

suspect that these corrupt traces are the result of the DAG cards loosing framing due to a

hardware failure. Over time, this problem got worse on one measurement node, resulting

in about 20% corrupt traces on this particular host during the measurements in 2009. Upon

detection of major errors, we discarded the specific trace and also deleted the corresponding

trace in the opposite direction.

In the minor error category we included IP header checksum errors and frames dis-

carded by the DAG due to receiver errors reported by the DAG cards. Receiver errors

include link errors such as incorrect light levels on the fiber and HDLC checksum errors.

Both errors are rather rare: in our traces (2006 and 2009), one out of 300 Million frames

resulted in an IP header checksum error, and also receiver errors are rare (one out of 191

Million frames). Traces with minor errors have been kept and used for analysis, but missing

packets and IP checksum errors have been documented in the attached meta-data files.

All remaining checks, such as parsing the system log during measurement intervals and

inspecting other internal errors reported by the DAG cards, did not trigger any errors and

are therefore classified as errors with unknown severity. However, if a novel error were to

show up, the sanitization procedure would be interrupted, requesting manual inspection and

categorization of the problem.

2.5 Resulting Datasets

We documented the collection process and the different pre-processing steps for each single

trace. We stored the resulting meta-data in a file together with a checksum digest of the par-

ticular trace, in order to provide distinctive association in case the trace and its meta-data file

get separated, e.g., when moving data. Meta-data includes a short description of the mea-
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Location Period Trace Interval Pkts Data Active IPs, Src to Dst (103) Used in
Year-Month Count Minutes 10

9 TB Outbound Inbound Paper #

GigaSUNET
2006-04 74 (x2) 20 10.8 7.6 25 to 590 613 to 120 II,IV-VII,IX

2006-09 to 2006-11 277 (x2) 10 27.9 19.5 24 to 620 635 to 80 III-V,VII

OptoSUNET 2008-12 to 2009-11 151 (x2) 10 33.0 19.5 6 to 800 2270 to 360 IV,V

Table 2.1: Summary of MonNet traffic traces. For each measurement series, the table summarizes:

number of traces collected (two unidirectional traces during each interval); measurement interval

duration in minutes; sum of packets in billions; total amount of data carried by the packets in TB;

average number of unique active IPs in thousands, i.e., sources sending packets to destinations during

a measurement interval, listed for outbound and inbound direction; List of appended papers using

traces from the specific series.

surement location, direction of the link, timing information, status information of the DAG

card and results of the three trace sanitization passes (before and after payload removal, and

between payload removal and anonymization). The meta-data provides a summary about er-

rors detected, which includes counts of occasionally observed receiver errors (HDLC CRC

errors) and the exact positions of frames including IP header checksum errors.

At present (January 2010), the MonNet datasets represent 95 hours of backbone traffic,

collected on 156 different days mainly during 2006 and 2009. As listed in Table 2.1, the

data includes in total 72 billion IPv4 packets, carrying 47 TB of data. The table further-

more contains average numbers of unique IPs seen within each measurement series in order

to provide a measure for the level of aggregation. The traces contain mainly IPv4 packets

(99.98%). The remaining traffic consists of IPv6 BGP Multicast messages, CLNP routing

updates (IS-IS) and Cisco Discovery Protocol (CDP) messages. Furthermore, on Giga-

SUNET we observed around 40 currently unidentified frames each minute. These frames

seem to have random address and control bytes in their Cisco HDLC headers, with non-

standard ethertypes of 0x4000 or 0x0000. The purpose of these frames is still unclear.

We recorded data traces at a GigaSUNET facility in Göteborg (i.e., the measurement

location in Fig. 2.1) in two measurement series during 2006, as also documented in Dat-

Cat, the Internet Measurement Data Catalog [59]. We collected datasets in April (Spring

dataset) and in the time from September to November 2006 (Fall dataset) on the measure-

ment location on GigaSUNET. At each measurement, we simultaneously stored traces for

both directions on the two measurement nodes. In Spring, we collected four traces of 20

minutes duration each day at identical times (2AM, 10AM, 2PM, 8PM) for a period of 20

days. We chose the times to cover business, non-business, and nighttime hours.

On the same location we collected GigaSUNET data at 277 randomized times during

80 days in Fall 2006. At each random time, we stored a trace of 10 minutes duration. We
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here chose randomized times in order to provide a good statistical representation of Internet

traffic characteristics at the specific time-period and location.

We collected data on OptoSUNET between December 2008 and November 2009 at the

SUNET Network Control Center (NOC) in Stockholm, which is the physical location of the

link highlighted in Fig. 2.2. During a number of smaller, scattered campaigns, summing up

to 151 10-minute intervals, we collected traces at randomized times, again simultaneously

for both directions. The data from OptoSUNET has been part of Papers IV and V, and is

currently used as raw data for ongoing studies.

2.6 Analysis Approaches

So far, we only discussed the measurement process including data pre-processing. In this

section, we outline the analysis approaches used to extract the scientific results we presented

in the papers included. Following the development of our understanding leading to inves-

tigation of our observations in a bigger context, the three analysis methodologies presented

are packet-level analysis, flow-level analysis, and traffic classification.

Packet-level Analysis

We ran different packet-level analysis programs on individual traces to extract statistical data

into a database. A challenge in these analysis programs was to provide sufficient robustness,

i.e., being able to deal with any possible kind of header inconsistency or anomaly. The

resulting database consists of tables for specifically interesting features according to our

research objectives, such as IP header length, IP packet length, TCP options and different

kinds of anomalous behavior. In the database tables, data was summarized per direction and

per measurement interval (i.e., trace time), which allowed us to analyze the data in different

dimensions by issuing respective SQL queries. We summarized the results of the packet-

level analysis in Section 4.2.1. The complete results are presented in Papers II and III, and

to some extent in Sections 3 and 4 of Paper VI.

Flow-level Analysis

To conduct a detailed connection-level analysis, we merged the tightly synchronized unidi-

rectional traces according to their timestamps. The ERF trace headers preserved the direc-

tional information in the resulting bidirectional traces. As a next step, our analysis program

collected per-flow information of the packet-level traces. We summarized packet streams

to flows by the use of a hash-table structure in memory. The gathered per-flow informa-

tion includes packet and data counts for both directions, start- and end times, TCP flags

and counters for erroneous packet headers and multiple occurrences of special flags like
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RST or FIN. We inserted this information into one database table for each transport pro-

tocol (TCP and UDP), with each row representing a summary of one flow (or connection

in the case of TCP).

We define a flow by the traditional 5-tuple of source/destination IP and port numbers

as well as the transport protocol [45]. As transport protocols, we only considered TCP and

UDP since they are together responsible for more than 99% of the data and the packets

carried on SUNET links (see Paper II). TCP flows represent connections, and are therefore

further separated by SYN, FIN and RST packets. Additional SYN segments for a specific

tuple can sometimes be observed in the same direction within short time intervals, as often

the case during scanning campaigns. In such cases, we opened further “connections” within

the analysis program since each SYN qualifies as a new flow. We then add following non-

SYN packets to the most recently opened connection of the particular tuple. Since UDP

offers no connection establishment or termination, we define UDP flows as the sum of bidi-

rectional packets observed between a specific 5-tuple during a specified time interval. For

Paper VI, we specified this timeout as 20 minutes, i.e., the complete measurement duration

of the traces in the Spring dataset. For Papers VII and IX we separated UDP flows by the

commonly accepted timeout of 64 seconds [45, 60], which allows comparison of the results

to related work [21]. We also used this bidirectional flow-level processing as ground-truth

verification in Paper IV.

Traffic Classification

We classified our backbone data based on a set of heuristics regarding connection patterns of

individual flows. A detailed description and verification of the heuristics can be found in Pa-

per IX. We performed almost the entire the traffic classification by complex SQL statements

within the database, starting with the flow tables resulting from the flow-level analysis. We

applied the heuristics to the flow tables in 10-minute intervals, which means that every in-

terval is analyzed in isolation, without memory of previous intervals. We first applied the

15 heuristics independently to all flows. For each flow, we set a bit-mask in a separate table

in the database according to matching rules. This approach made it possible to verify each

heuristic separately and to investigate the effects of different priority rankings of the heuris-

tics. After empirical exploration of the most suitable prioritization scheme for the heuristics,

we set an additional bit mask associated with each flow, indicating the final traffic classi-

fication into classes such as Web, P2P and attack traffic. The original flow tables together

with the associated classification tables allow a convenient way to analyze and compare

flow and connection characteristics among traffic of different network applications, which

we did successfully for Paper VII.
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Related Measurement Projects

Even though access to data from large-scale passive Internet measurements is still rare, the

research community put significant amounts of effort into passive Internet measurement

activities in recent years [46]. These activities include development of active and passive

measurement methodologies and tools, targeting aspects such as network performance [61–

63], traffic classification and quantification [13, 14, 64], reliability and security [65, 66]. In

this section, we give an overview of measurement projects dealing with passive collection

of Internet traces and packet-level analysis thereof, which is closely related to the topic of

this thesis. This overview first presents the most prominent passive measurement projects,

which have access to backbone measurement facilities and resulting packet-level traces.

Second, we point out some smaller traffic analysis projects, some of which have access to

their own packet traces, but many of them depending on shared and often slightly outdated

datasets or flow-level data from cooperating service providers. The MonNet project, which

we described in this thesis, provides new, contemporary data from a previously unmeasured

network. The novelty of the data, the high aggregation level of the measured links, and the

packet-level granularity of the traces contribute to a global picture of the current Internet.

NLANR PMA

The Passive Measurement and Analysis Project (PMA) [67] of the National Laboratory for

Applied Network Research (NLANR) ended officially in 2006. The goal of NLANR PMA

was to gain better understanding of the operation and behavior of the Internet by studying

passive header traces. NLANR collected traces by daily measurements at different back-

bone and access network locations across the USA with speeds of up to OC48 (2.5Gbit/s).

The measurements have been performed by specially designed nodes, the OC3MON and

OC48MON systems [44], which have been based on Endace DAG4.2 cards [36]. The

OC48MON system also influenced the design of the IPMON system of Sprint [45]. NLANR

PMA made packet header traces publicly available, which lead to a number of analysis stud-

ies by other researchers based on NLANR PMA data. Jiang and Dovrolis used NLANR

25
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traces to evaluate a passive measurement methodology that estimates the RTT distribution

for TCP connections on a given network link [68]. Lan and Heidemann show that there are

strong correlations between some combinations of size, rate and burstiness in “heavy-hitter”

flows on NLANR PMA data [69, 70]. Pentikousis and Badr presented a comparative study

of TCP option deployment, showing that the majority of senders employ the maximum seg-

ment size option, large windows do not accompany SACK deployment, and ECN usage is

negligible on NLANR traces from 12 measurement locations [71].

CAIDA

The Cooperative Association for Internet Data Analysis (CAIDA) [72] was launched in

1997 and is based at the University of California (UCSD) on the San Diego Super Com-

puter Center (SDSC). CAIDA sets out to provide tools and analyses in order to promote

maintenance of a robust, scalable global Internet Infrastructure. The broad research activi-

ties include routing and addressing, topology, DNS, security, performance, visualization and

traffic analysis. Researchers at CAIDA published a number of relevant studies of passive In-

ternet measurement and traffic analysis [73]. These publications include the transport layer

identification of P2P traffic in Karagiannis et al. [21, 74], analyses of passively collected

Internet traffic in Fomenkov et al. [75] and McCreary and claffy [76], and the observations

on fragmented traffic in Shannon et al. [77]. CAIDA also developed popular measurement

tools, such as NeTraMet or CoralReef [78, 79], and founded the Internet measurement data

catalog DatCat [80]. Furthermore, CAIDA shares datasets with the research community,

such as security-related data traces from their network telescope and packet-level header

traces from US peering points. Due to the high similarity in research focus, we carried

out recent MonNet activities (including Papers IV and V) on data from both MonNet and

CAIDA as joint studies with researchers situated at UCSD.

ITA

The Internet Traffic Archive (ITA) is hosted by the Lawrence Berkeley National Laboratory

(LBNL) [81]. ITA was sponsored by ACM SIGCOMM to provide a moderated repository

to support widespread access to Internet traffic traces, which are however rather outdated

(+10 years). In addition to trace manipulation and analysis software (e.g., tcpdpriv, a trace

anonymization program [82]), ITA includes LAN and WAN packet traces, flow records and

HTTP logs collected at various sites between 1989 and 1998. These early packet traces

have been used for seminal works on traffic characterization and modeling: Leland et al.

[83] demonstrated in 1994 that Ethernet traffic is statistically self-similar and that none of

the traditionally used traffic models (e.g., Poisson-related models and packet train models)
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are able to capture this fractal-like behavior. Paxson and Floyd [84] then showed in 1994

that Poisson processes are valid only for modeling the arrival of user sessions, but that

WAN packet arrival processes are better modeled using self-similar processes. Paxson in

the same year furthermore found exponential growth trends in wide-area TCP connections

from many applications with an explosive growth of then new protocols such as gopher

and HTTP during 1992 and 1993 [85], and empirically derived analytic models to describe

characteristics of wide-area TCP connections for TELNET, NNTP, SMTP and FTP [86].

LBNL/ICSI

The enterprise tracing project of the Lawrence Berkeley National Laboratory (LBNL) col-

lected more than 100 hours of LBNL’s internal enterprise traffic in 2004 and 2005 to charac-

terize traffic recorded at a medium-sized site. They anonymized the traces by tcpmkpub [87]

and made them publicly available [88]. Researchers at the LBNL presented a first look at

this data [89] and provide a high-level view of many aspects of enterprise network traffic,

including characterization of applications used only within enterprises and not on WAN

environments (e.g., Windows protocols).

The LBNL enterprise dataset has unfortunately also been used in a study investigating

the quality of anonymization techniques (including tcpmkpub [87]). Coull et al. [90] pre-

sented techniques to infer network topology and to de-anonymize servers in anonymized

network data, using only the data itself and public information. While the authors intended

to inform the community about the weaknesses of anonymization methods, they failed to

consult with the data providers about the de-anonymization attempt1. As a reaction, Allman

and Paxson [91] proposed a code of conduct for data providers and data seekers. Fur-

thermore, they stress the importance of sharing policies in addition to technological data

anonymization techniques, an issue that is also supported by other researchers in the Inter-

net measurement community [92].

WAND Network Research Group

The WAND network research group [93] is located at the University of Waikato Computer

Science Department. WAND is a network measurement research group, performing among

other things collection of long trace sets, network analysis, development of analysis soft-

ware, and network simulation and visualization. In the field of passive network measure-

ments, WAND is best known for the Waikato Internet Traffic Storage archive (WITS) [94]

and the development of the DAG measurement cards. The WITS archive contains about

1Later comparison of the de-anonymization results with ground truth showed that most of the IP addresses in

the LBNL dataset have in fact been incorrectly de-anonymized [91].
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200GB of traces taken at different locations starting in 1999, with the most recent trace

dating from January 2009. To-date, only statistical summaries of the traces are publicly

available, but traces are planned to be shared in the near future according to their web-

page [94] (as viewed in November 2009). WAND developed the DAG measurement cards,

a flexible and efficient hardware solutions for network measurements. Today, Endace [36] is

responsible for the support and development of DAG equipment, founded in 2001 as spin-

off company. In addition to publications describing the development of DAG cards, WAND

also contributed scientific measurement results based on WITS data traces, like the analysis

of long duration traces by Nelson et al. [95] covering protocol mix, network trip times and

TCP flag analysis.

WIDE Project and MAWI

The Widely Integrated Distributed Environment (WIDE) project [96] was launched in 1988

in Japan and is made up of more than 100 loosely bound organizations from all over the

world. The visionary goal of WIDE is to construct a dependable Internet “that can be used

by people from all walks of life in any situation with a sense of security”. WIDE research

activities cover all different layers of the Internet, including activities such as flow measure-

ments with sFlow/NetFlow and analysis of IPv6, DNS and BGP routing information. The

“Measurement and Analysis on the WIDE Internet” (MAWI) working group furthermore

provides a traffic repository of data captured on the WIDE backbone [97], focusing mainly

on DNS and IPv6 traffic measurements. The MAWI repository shares their anonymized

packet-header traces from trans-pacific backbone links (limited to 18 Mbit/s, later updated

to 100 and finally 150 Mbit/s) with other researchers. This dataset contains traces of 15

minutes collected once per day at 2PM from 2001 to 2009, allowing longitudinal studies

such as sketching the evolution of Internet traffic during 7 years in Borgnat et al. [98].

EU Framework Projects SCAMPI and LOBSTER

SCAMPI [99] was a two-and-a-half year European project sponsored by the Framework

Project (FP) 5 Information Society Technologies (IST) program of the European Commis-

sion, starting in April 2002. SCAMPI involved ten European partner organizations, with the

goal to develop a scalable monitoring platform for the Internet in order to promote the use of

monitoring tools for improving services and technology. The original project was succeeded

by another IST project under FP6, the LOBSTER [100] project. LOBSTER continued the

deployment of an European Traffic Monitoring Infrastructure based on distributed monitor-

ing sensors capable of collecting on link speeds of up to 10Gbit/s. Besides the deployment

of a monitoring infrastructure, LOBSTER developed a number of monitoring and visual-
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ization tools, such as Stager [101], a tool for aggregating and presenting network statistics.

Researchers from both SCAMPI and LOBSTER were actively involved in the development

of the IPFIX flow format standard [30]. LOBSTER also made a number of network attack

traffic traces available for download [102]. The attack data includes complete packet traces

of individual network flows including polymorphic shellcode, detected by an emulation-

based method [103]. Other activities included development of a generic anonymization

framework for network traffic [104], which was developed after revealing vulnerabilities

in existing pseudonymization approaches [57, 58]. The LOBSTER project concluded on

30 June 2007, but the sensor network remains operational. Since then, the FP7 project

MOMENT [105] works on an unified interface for representation and retrieval of passive

measurement data provided by LOBSTER nodes, but also of active measurement informa-

tion from related projects such as ETOMIC [106] and DIMES [107]. MOMENT sets out to

create added value from single measurement infrastructures by integrating these results.

SPRINT ATL

In early 2000, Sprint’s Advanced Technology Labs (Sprint ATL) started with the design and

deployment of a passive monitoring Infrastructure, called IPMON [45]. The IPMON sys-

tem consisted of a number of measurement nodes, a central data repository and an analysis

platform for offline analysis of the data. The measurement nodes are technically similar to

the OC48MON systems and were located at geographically distributed Points of Presence

(POPs) in order to collect data on different peering and backbone links, with bandwidths up

to OC192 (10Gbit/s). As a result, IPMON was able to collect packet-level traces on about 30

bidirectional links in the US Sprint IP backbone. A resulting analysis of 24h traces collected

on average every two months between 2000 and 2005 was published online [108]. This anal-

ysis reveals general traffic characteristics such as utilization, protocol breakdown and packet

size distribution. Sprint’s applied research group is also focusing on next-generation wire-

less systems, data mining and security. The latter research topic includes development of

a continuous monitoring platform for high-speed IP backbone links, CMON, the successor

of IPMON. CMON [109] was intended to provide a continuous packet stream for detection

of anomalies, unusual events and malicious activities. In fact, researchers at Sprint devel-

oped an efficient online port scan detection and tracking system utilizing the CMON traffic

monitoring architecture [110, 111].

AT&T Labs

The NetScope project [112] is a measurement project that combines active and passive

measurements on the AT&T network. In this framework, a monitoring system to collect
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and filter packet-level data has been developed, named PacketScope [113]. Researchers

at AT&T Labs performed various studies on the resulting data collected from access and

backbone links, including quantification of P2P traffic on the Internet during the years 2002-

2004 [22, 114, 115]. Recently, Qian et al. presented a fresh look at TCP in the wild on data

collected on AT&T backbone and access links during 2008 [116]. This study found no

qualitative differences in TCP flow sizes and durations, but higher flow rates compared with

an earlier study on AT&T backbone data from 2001 [117]. Sizes of elephant, cheetah, and

tortoise flows2 increased by an order of magnitude compared to a study on backbone data

from 2002 and 2003 [70].

Other Measurement Projects

Besides these big measurement projects, various researchers carried out some other passive

network measurements. Maier et al. [118] studied residential broadband Internet traffic on

data from DSL connections of a large European ISP in 2008 and 2009. This study includes

packet- and flow-level characteristics and showed that HTTP, and not P2P traffic dominates

the traffic observed. Arlitt and Williamson took a year-long packet-level trace in 2004 on the

100Mbit/s Ethernet campus network at the University of Calgary in order to analyze TCP

reset behavior [119], showing that large portions of TCP connections (15-25%) have at least

one TCP reset. Also Moore and Papagiannaki used packet-level data collected on a campus

network based on Gbps Ethernet to compare network application identification methods

[11]. They took these measurements with Nprobe, a passive measurement architecture to

perform traffic capturing and processing at full line-rate without packet loss [120]. Crotti

et al. [121] and Dusi et al. [122] collected network traces on the edge router of the faculty

campus network at the University of Brescia in order to study statistical mechanisms for

classification of network traffic. Crotti et al. showed that Internet flows from traditional

applications such as HTTP, SMTP and POP3 can be classified by statistical methods without

parsing payload data. Dusi et al. showed that statistical methods can even be used to

identify applications tunneled in encrypted SSH tunnels. Together with active measurement

approaches, Medina et al. [123] used passive measurements of a ICSI lab web server during

two weeks in 2004 to track the deployment of transport-related mechanisms in transport

protocols. In this work, passive measurements are used to infer usage of specific TCP

features at web clients, such as TCP options usage and window size advertisements.

Measurements from networks with higher aggregation are often only available in form

of flow data. Perenyi et al. [124] based their identification and analysis method of peer to

2Elephant, cheetah, and tortoise flows correspond to heavy-hitter flows in size, rate, and duration respectively.

Heavy-hitters are in [116] and [70] defined by flows greater than mean plus three standard deviation.
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peer (P2P) traffic on NetFlow data from an ADSL network with around a thousand ADSL

subscribers in Hungary. They show that it is possible to identify P2P traffic without access

to packet payloads with the help of heuristics on flow properties, such as concurrent TCP

and UDP flows between IP pairs, and default P2P port numbers. In the 2009 Internet obser-

vatory report, Labovitz et al. [125] studied two years worth of flow data collected on more

than 3000 peering routers across 100 global- and regional network and content providers.

The study highlighted changes in the logical topology away from the traditional Tier-1 core

towards a flatter and more interconnected hierarchy. They also observed changes in applica-

tion usage, including decline of P2P file sharing traffic at the expense of increasing amounts

of streaming media (often via HTTP), confirming recent results by Maier et al. [118].

3.1 Publicly Available Datasets

Generally, access to modern packet-level traces from large-scale Internet links is uncom-

mon. The only publicly available datasets that are frequently updated are published by

CAIDA in the form of anonymized OC192 backbone traces [126] and by WIDE in the form

of anonymized traces from trans-pacific OC3 links [97].

Since researchers without access to their own measurement infrastructures do not have

the possibility to study recent data other than the datasets mentioned above, they need to

perform their research on a relatively small set of publicly available, but not updated and

thus somewhat outdated network traces. These datasets include the historical datasets of

the Internet traffic archive [81], the anonymized enterprise traffic datasets from LBNL of

2005 [88] as well as NLANR’s traces from OC3/12/48 links up to 2006 [67]. Note that the

NLANR traces do not include complete packet headers, but only contain the first 16 byte

of the transport header, which does not suffice to store complete TCP headers and therefore

limits the analysis possibilities (such as investigating TCP option deployment).

Besides these general packet header traces, there are also public traces of special net-

work events such as network attacks and worm outbreaks. CAIDA until recently continu-

ously published backscatter traces, including worm outbreaks and Denial of Service (DoS)

attacks [126], while the LOBSTER project made code injection attack traffic from 2007

available for the research community [102].

3.2 Data Sharing Approaches

The few data providers sharing datasets applied different anonymization methods to balance

privacy requirements of data owners and providers with the information requirements of

researchers (i.e., handles the tradeoff between data privacy and utility). Traces available
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at the Internet Traffic Archive (ITA) [81] and MAWI Traffic archive [97] are anonymized

with tcpdpriv [82]; the LBNL enterprise traces [88] with tcpmkpub [87]; and CAIDA traces

[126] with CryptoPAn [41]. Attempts to encourage the Internet measurement community to

share data (e.g., Internet measurement data catalog DatCat [127] and PREDICT repository

[128]) have been of limited success, probably due to stringent sharing policies3 which are

often stated cautious, not least because of disclosed vulnerabilities of current anonymization

methods (such as successful trace de-anonymization attempts [57, 58, 90]).

Recently, a number of researchers acknowledged the need for alternatives to the existing

anonymization methods. Many of these approaches could be effective for enabling secure

access to even highly sensitive data, i.e., traces including user payload. Parate and Mik-

lau [129] proposed a sharing framework in which trace owners can match an anonymizing

transformation of communication data with the requirements of analysts. In contrast to ex-

isting anonymization methods, the framework should in this way enable formal reasoning

about the impact of anonymization operations on trace utility and privacy.

Alternative ways to anonymized data sharing are “move code to data” solutions4. Sim-

ple “move code to data” solutions5 might be a straightforward way to provide researches

with access to data (which could even be un-anonymized), considering that analysis tools

are usually open-source and thus unproblematic to share from an legal/ethical point of view.

However, the success of this approach depends on cooperation efforts of the data providers

and thus is not scalable. These efforts include time expenses (e.g., safety-review and in-

stallation of the code) and allocation of computational resources. Mogul and Arlitt [130]

presented a prototype of SC2D, a framework for shipping flexible analysis code to the data.

The proposed solution is based on a layered framework to facilitate usage and verification

of privacy and security properties of the received code for the data provider/owner, but the

basic scaling issues remain.

As another solution to the privacy/utility tradeoff in data sharing, Mirkovic [131] pro-

posed a privacy safe sharing framework based on secure queries. Similar to Mogul and

Arlitt’s SC2D, raw traces are not copied and shared. Instead, data access is re-directed

through an online interface providing a query language, which allows customized sets of

queries to be run on the data and returning de-sensitized, aggregated information fitting the

specific research goals. Individual privacy policies can thus be enforced by the query lan-

3DatCat mainly shares meta-data, and access to the actual data needs to be negotiated with the respective data
owners; PREDICT traces are only available to researchers inside the US.

4Instead of the data providers releasing data, the data seekers give their analysis tools to the data providers, who

perform the requested analysis and return the results to the seekers.
5Basic “move code to data” is the ad hoc solution we currently use to give other researcher access to our

MonNet data traces.
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guage interpreter. Since the framework only returns aggregated information, its utility is

limited and many analysis tasks cannot be supported.

The most advanced “move code to data” approach was recently presented by Mittal et

al. [132]. They propose secure mediated trace access using black-box permutation analysis.

This approach allows data providers to detect information leaks in the analysis programs

received from data seekers. The data provider can verify the policy compliance of the anal-

ysis results by repeated permutation of sensitive fields in the input traces inside a sandboxed

environment, followed by an analysis and security assessment of the resulting output before

it is sent back to the data seeker.

Kenneally and claffy [92] proposed a combination of a policy framework that satisfies

obligations of both data seekers and data providers, and a technology framework able to

enforce these obligations. The Privacy Sensitive Sharing framework (PS2) should reveal

that actual data-sharing is less risky (in form of privacy risks) than not sharing data (and

inability to understand and anticipate the Internet and its security threads) considering the

importance of modern Internet.



34 CHAPTER 3. RELATED MEASUREMENT PROJECTS



4
Thesis Outline and Research Summary

Part I of this thesis comprises the syntheses chapters which include our lessons learned and

reflections from passive Internet measurements. Part II is a collection of individual reports

and papers published in scientific journals, conferences and workshops as listed in the pref-

ace on pages v and vi. In the following sections we describe how the papers conceptually

relate to each other and provide short summaries of each specific paper including discus-

sions about their main contributions. Fig. 4.1 depicts a schematic overview of the papers

and groups them into a logical structure to guide the reader through this outline.

Figure 4.1: Schematic of the papers included in this thesis. Grey-shaded boxes represent the papers,

with grey-shades indicating the type of contribution: Overview and review papers in light-grey; Papers

focusing on analysis methods in medium-grey; Papers focusing on the results of characterization in

dark-grey. Background shades to two boxes represent the secondary purpose the papers.

35
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4.1 Internet Measurement: Collecting Backbone Traffic

Paper I: Passive Internet Measurement: Overview and Guidelines based on Experiences

discusses the major challenges we encountered during our Internet traffic collection. We

first give a detailed overview of different design options and important considerations for

backbone measurements. We then discuss the challenges in order of their chronological

appearance: we had to sort out a number of legal and ethical issues with legal practition-

ers and network operators, followed by operational difficulties that needed to be solved.

Once we managed these legal and operational obstacles establishing trust relationships with

the network operator and an ethics committee, a third challenge is given by various tech-

nical difficulties when actually measuring high-speed links. Technical issues range from

handling the vast amounts of network data to timing and synchronization issues. Finally,

we describe how we navigated the aforementioned issues in MonNet, which we consider

a successful Internet measurement project. We therefore have been able to provide con-

crete lessons learned based on our experiences. One such important lesson to note was our

failure to establish policies regarding sharing our data with other researchers. In total, the

paper presents an overview and guidelines for setting up and performing passive Internet

measurements. We would have saved a lot of time, money and energy if a similar paper had

been available five years ago. For this reason, we believe that this type of paper can be of

great value for researchers and practitioners planning and designing Internet measurements,

currently or in the future.

4.2 Traffic Analysis: Characterization of Internet Traffic

4.2.1 Packet-level Characterization

Paper II: Analysis of Internet Backbone Traffic and Anomalies Observed reflects packet

characteristics on SUNET Internet backbone traffic and points out misbehaviors and poten-

tial problems. We used the bidirectional traffic collected on GigaSUNET in Spring 2006

to provide a summary of current protocol usage including comparisons to prior studies.

The analysis confirmed that IP options and Explicit Congestion Notification (ECN) are vir-

tually not applied. On GigaSUNET, we observed minor fractions of fragmented IP traffic

(0.06%), with UDP accounting for a majority of the fragments. The latter observation stems

from increased deployment of TCP Path MTU Discovery, which we showed to be dominat-

ing. Regarding packet size distribution, three findings should be noted: (i) we found packet

size distribution on GigaSUNET to be bimodal, i.e., most packets were either small (44%

between 40 and 100 byte) or close to the Ethernet Maximum Transmission Unit (MTU)
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size (37% between 1400 and 1500 byte). Earlier measurements (up to 2002) on backbone

links [45, 76], and also more recent wide-area measurements in China during 2006 [133] re-

ported of substantial fractions of packets with default datagram sizes (i.e., 576 bytes [134]);

(ii) in our data from 2006, IP packet lengths of 628 bytes were even more common (1.8%)

than the default datagram size (<1%). We identified these packets to be artifacts of a then

popular P2P application (Gnutella [135]); (iii) we do not see any jumbo packets except for

BGP updates between routers and one single custom application optimized for bulk trans-

fer. We furthermore identified additional headers introduced by VPN as one cause for the

otherwise rare occurrence of IP fragmentation, which should advise application developers

to use smaller MSS values. Finally, we highlight several types of misbehaviors within IP

and TCP headers, which led to a closer investigation of header anomalies in Paper III.

Paper III: Detection of Malicious Traffic on Backbone Links via Packet Header Analysis

provides a systematic listing of packet header anomalies together with their frequencies as

seen “in the wild”. In the paper, we analyzed backbone data recorded on GigaSUNET in

Fall 2006 regarding consistency of network and transport layer headers (i.e., IP, TCP, UDP

and ICMP) in order to study occurrences of malicious activities in modern Internet traffic.

This analysis approach is similar to the header “walk-through” approach used for IDS traffic

normalization in Handley and Paxson [136]. In our paper, we focus on the results of this

header analysis and present occurrences of header anomalies observed in today’s Internet

traffic. We also provide detailed discussions about possible causes for the inconsistencies

and their security implications for networked devices. The results are interesting for prac-

titioners and researchers, and form valuable input for intrusion detection systems, firewalls

and the design of all kinds of networked applications exposed to network attacks.

We found inconsistencies in protocol headers in almost every aspect analyzed, includ-

ing incorrect or incomplete series of IP fragments, IP address anomalies and other kinds

of header fields not following Internet standards. As a general observation, it is surpris-

ing to see that we still found many old, well-known attacks. On the upside, our data did

not include some former popular attacks, such as Ping-of-death and the IP source route ex-

ploit. Generally, we observed a constant noise of malformed or inconsistent packet headers

(which are however a very tiny fraction of the total number of packets), consistent with the

constant scanning activities we observed on a flow-level in Paper VII and the observations

of incessant background radiation on IP sinkholes (i.e., unused IP address spaces) [66]. In

some cases, this type of background noise is likely to be caused by software implementa-

tion or hardware errors, as observed on an 100Mbps Internet access link during 1999 by

Paxson [137]. However, we believe that many inconsistencies could also be attributed to



38 CHAPTER 4. THESIS OUTLINE AND RESEARCH SUMMARY

the possibility that even inexperienced hackers today can generate more or less any type of

packet header with existing networking tools.

We also observed a number of exceptional events of malicious activity. We identified

an ICMP DoS attack with otherwise unsuspicious echo reply messages by analyzing IP ad-

dresses regarding reserved IP spaces. We observed a sequence of fragmented datagrams

that has been sent in high intensity from a single host for short time intervals. Our detailed

analysis of the fragment series revealed a directed Frag attack, using incomplete fragment

series with the intention to exhaust resources at the receivers. Filtering IP ID values of zero

appeared to be a successful approach to detect different fragmentation anomalies. Obser-

vations of the reserved bits field of the TCP header revealed a series of SYN/ACK attacks.

Port number values of zero proved effective in detecting port scanning campaigns, both on

TCP and on UDP. Finally, our analysis revealed an ICMP DoS attack using ICMP redi-

rect messages.

4.2.2 Flow and Connection-level Characterization

Despite providing a valuable understanding of packet-level behavior of Internet traffic, Pa-

pers II and III revealed that pure packet-level analysis is often not enough to fully under-

stand some of the observations, such as the origin of unusual packet sizes, fragmented traffic

and network attacks. By applying the method described in Section 2.6 to correlate packets

into flows or connections/sessions, we will now provide further insights and also re-validate

some common assumptions about network traffic.

Paper IV: Estimating Routing Symmetry on Single Links by Passive Flow Measurements

sheds light on the assumption of traffic symmetry which researchers and developers often

embedded into traffic analysis and classification methods [8–10]. We developed a simple

flow-based symmetry estimation method, FSE, a normalized metric allowing to assess and

compare traffic symmetry of links on a flow-level. We also published a tool implementing

the proposed method1, and applied it to a heterogeneous dataset, resulting in several valu-

able reference data points on traffic symmetry. The results confirm anecdotal reports that

traffic symmetry typically does not hold for non-edge Internet links, and decreases as one

moves toward core backbone links, due to routing policy complexity. Our proposed metric

for traffic asymmetry induced by routing policies should help the community to improve

traffic characterization techniques and formats, but also support quantitative formalization

of routing policy effects on links “in the wild”.

1The tool is available at http://www.cse.chalmers.se/ johnwolf/FSE.



4.2. TRAFFIC ANALYSIS: CHARACTERIZATION OF INTERNET TRAFFIC 39

Paper V: Analysis of UDP Traffic Usage on Internet Backbone Links re-validates the as-

sumption that TCP is the dominant transport protocol on the Internet, as reported repeatedly

( [45, 75] and our own results from 2007 in Paper II). We investigated UDP traffic in traffic

traces collected in the period 2002-2009 on several backbone links located in the US and

Sweden. We assess the fraction of UDP traffic in terms of flows, packets and bytes. Ac-

cording to this data, TCP is still dominant in packets and bytes, but the use of UDP as a

transport protocol has gained popularity recently, especially in terms of number of flows.

Our first analysis suggests that most UDP flows use random high ports and carry few pack-

ets and little content (payload), consistent with its use as a signaling protocol for popular

P2P applications (Paper VIII). This trend may again change with the advent of IPTV and

UDP based P2P applications, which not only signal, but also transport large data volumes

via UDP [138, 139]. The effect of increasing fractions of UDP traffic volumes on network

stability will depend on the congestion control abilities of these application protocols. The

increasing trend of UDP therefore needs to be monitored closely in order to keep track of

possible undesirable effects.

Paper VI: Differences between In- and Outbound Internet Backbone Traffic utilized the

Spring 2006 dataset from GigaSUNET to highlight significant directional differences in

traffic properties between in- and outbound traffic. While some high-level analysis, like cu-

mulated traffic volumes or protocol breakdown, could suggest an even distribution between

inbound and outbound traffic, this study reveals that there are a number of significant direc-

tional differences found on different protocol levels (IP, TCP and UDP). Traffic properties

differing per direction include IP fragmentation, TCP termination behavior and TCP options

usage. Our analysis includes a focus on TCP connection properties, yielding two classes of

traffic as the main reasons for the directional differences: malicious traffic and P2P (file

sharing) traffic. These results highlight the importance of traffic classification techniques

(as discussed in Papers VIII-X) that allow detailed analysis on isolated classes of traffic.

Our investigation of malicious behavior confirms the suspicion that most anomalies in-

deed originate on the outside, on the “unfriendly” Internet. We showed that anomalies on

GigaSUNET were between 3 and 9 times more common among inbound data. Typical uni-

versity campus networks, even student networks, are comparably well behaving, probably

due to more attention to configuration and administrative efforts.

P2P file sharing traffic was a second source heavily influencing traffic properties. Even

a simple analysis based on ports (known to underestimate real P2P traffic numbers) showed

that P2P traffic was a major part of the traffic samples, responsible for at least twice as

much packets and volume of inbound traffic as of outbound traffic. We found artifacts of
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P2P traffic in packet size distribution, TCP connection termination behavior, TCP options

and statistical connection properties. We showed that P2P was also a major traffic source

for long-duration flows, especially among inbound connections. Additionally, in our traces

P2P overlay traffic was responsible for many (at least 18% based on port classification)

UDP flows, carrying typically fewer than 3 small sized packets, but responsible for several

million distinct IP addresses observed in the traffic.

Paper VII: Trends and Differences in Connection Behavior within Classes of Internet Back-

bone Traffic follows up on the findings of Paper VI and presents a connection-level char-

acterization of the GigaSUNET datasets from Spring and Fall 2006. We classified the data

according to network application following the coarse grained classification method pro-

posed in Paper IX. We then compared three traffic classes (P2P, Web and malicious) in terms

of traffic volumes and signaling behavior. The classification allowed us to discuss differ-

ences between traffic classes, which we found in many aspects, even if not always expected.

Beside diurnal patterns, the time-span of the dataset allowed us to highlight longitudinal

trends. These results provide researchers, developers and practitioners with detailed knowl-

edge about trends and influences of different traffic classes observed in our Internet traffic

traces from 2006.

Our analysis revealed that overall traffic volumes were increasing for both TCP and

UDP traffic, with highest activity in the evenings. On a diurnal basis, P2P and HTTP traffic

exhibited different peak times. P2P traffic dominated with 90% of the transfer volumes,

especially during evening and overnight. In contrast, HTTP traffic exhibited its peak activ-

ities (9% of the data-volumes) during office hours. We observed similar diurnal patterns in

terms of connection numbers, even if P2P connections were not as dominating as in terms

of bytes. These results indicate that P2P connections typically carried more data than Web

traffic. Unsolicited and malicious traffic (including scanning) was responsible for a substan-

tial part of TCP connections (20-30%) and UDP flows (8-12%), but played a minor role in

terms of data volumes since it typically consists of 1-packet flows only. It was interesting

to observe that the amount of malicious TCP and UDP flows remained constant in absolute

numbers both on diurnal and longitudinal basis, even though traffic volumes generally in-

creased. This result suggests that malicious traffic (e.g., scanning attacks) forms a constant

background noise on the Internet.

After 2002, measurements from many links reported high fractions of P2P traffic vol-

umes (see Paper VIII). P2P was especially dominating European traffic, as reported by

Perenyi et al. with 70% P2P on Hungarian ADSL data from 2005 [124], and up to 83%

in some regions in Europe during 2007 according to IPOQUE [140]. However, our results



4.3. TRAFFIC ANALYSIS: CLASSIFICATION OF INTERNET TRAFFIC 41

for P2P traffic volumes of up to 90% on the SUNET links are still exceptionally high. An

analysis of IP prefixes showed that the main fractions of the P2P volume observed is traf-

fic to and from a large student residential network in Gothenburg (GSIX). The remaining

traffic carried relatively low fractions of P2P traffic, which is consistent with the restrictive

non-file sharing policies on most Swedish universities. We suspect that the large P2P traffic

volumes for student dormitories can be explained by the combination of low risk of legal

persecution in Sweden at the time of the measurements2, inexpensive and high-speed Inter-

net connectivity, the well fitting network demographics (i.e., young, tech-savvy students),

and the traditionally central role of Sweden in the international file sharing community (e.g.,

The Pirate Bay [142]). Since 2008, various studies indicated a decline of P2P traffic in Eu-

rope to below 50%, perhaps superseded by one-click hosting and streaming media traffic,

which is often carried inside HTTP [1, 118, 125]. An interesting future research task will

therefore be reassessing the current fraction of P2P traffic on the SUNET links and compar-

ing them to these recent studies.

In terms of connection signaling behavior, we highlighted major differences between

the three traffic classes. The number of unsuccessful P2P connection attempts, which dom-

inated the P2P connection breakdown in Spring, increased further in the Fall traces. The

large fraction (43%) of 1-packet flows combined with the large average data amounts per

P2P connection manifested a pronounced elephants and mice phenomenon (Pareto princi-

ple) within P2P flow sizes. Regarding termination behavior, P2P connections shifted to-

wards higher fractions of proper closings in the Fall traces. HTTP connections on the other

hand appear to behave comparably well according to TCP specification at all times.

We showed that TCP option deployment differed significantly between P2P and Web

traffic. While P2P traffic reflected an expected behavior considering the default settings in

popular operating systems (Windows, Linux), HTTP showed artifacts of a traditional client-

server pattern, with some dedicated web servers neglecting negotiation for certain TCP

options, especially SACK. We conclude that even though SACK was deployed by almost

all P2P hosts and web clients, a number of (high volume) web servers neglect support for it.

4.3 Traffic Analysis: Classification of Internet Traffic

Papers IV to VI showed that correlation of packets into flows is not always sufficient to

fully understand traffic properties. An obvious next step toward better understanding is to

separately analyze individual flows of certain traffic classes and types, as done in Paper VII.

2This changed on April 1, 2009, when an anti-piracy law based on the European directive on the enforcement

of intellectual property rights (IPRED) [141] came into effect in Sweden.
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Note that reliable classification of Internet traffic based on network applications is still an

open research issue, partly due to technical challenges caused by the arms-race introduced

in Section 1.2.2. However, in this section we identified additional challenges and shortcom-

ings related to validation and reproducibility of current traffic classification efforts. We will

then propose two new classification approaches: a coarse grained method for aggregated

Internet backbone traffic based on connection patterns, and a fine grained method based on

statistical features for traffic traces with some available payload.

Paper VIII: State of the Art in Traffic Classification: A Research Overview presents a re-

search review of scientific traffic classification methods published since 1994, including

more than 60 scientific papers and more than 80 data sets. We continuously update the com-

plete survey of papers and datasets, that can be found online [64]. Paper VIII includes stud-

ies published until 2008 and presents a rough taxonomy of traffic classification approaches

(based on features, methods, goals and data sets), showing that traffic classification meth-

ods have evolved in response to the more sophisticated obfuscation techniques of network

applications (i.e., the arms-race). The review also reveals shortcomings with current traffic

classification efforts:

• Lack of shared, modern data sets as reference data: The variety of data sets used does

not allow systematic comparison of methods. Few research groups (can) share their

datasets. The field of traffic classification research still needs publicly available, mod-

ern data sets as reference data for validating approaches. This need, however, requires

clear policies for data sharing, including accepted anonymization and desensitization

guidelines. We will further discuss this topic in the concluding Chapter 6.

• No clear definition for traffic classes: The poor comparability of results is further am-

plified by the lack of standardized measures and classification goals. For example, there

exists no agreed performance metrics and definitions for traffic classes (e.g., P2P or file

sharing). This will also be discussed in Chapter 6.

Despite these shortcomings, we showed how this taxonomy can shed light on questions

such as: "how much of modern Internet traffic is P2P?" Though we were able to show some

trends and indications, we had far too little data available to make conclusive claims beyond

"there is a wide range of P2P traffic on Internet links; see your specific link of interest and

classification technique you trust for more details."
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(a) P2P ports

P2P Application(s) Proto(s) Port range(s)

BitTorrent tcp/udp 688[0-9], [1-5]6881, 32459, 49152

eDonkey
tcp/udp 466[0-8], 14662
udp 4672, 14672

DirectConnect
tcp/udp 41[1,2], 1412
udp 9183

Fasttrack (Kazaa) tcp/udp 121[4,5], 4329

Gnutella tcp/udp 634[6-9]

Napster, WinMX tcp/udp 5555, 6257, 66[66,77,88,99]

Soulseek tcp 2234

Soribada tcp 22321

MP2P tcp/udp 41170

(b) non-P2P ports

Appl. Proto(s) Port(s)

FTP tcp 20, 21

SSH tcp 22

Telnet tcp 23

Mail tcp 25, 110, 143, 220, 993

DNS tcp/udp 53

NTP udp 123

Netbios tcp/udp 135, 137, 139,445

BGP tcp/udp 179

RTSP udp 554

Table 4.1: Port numbers used for the port-based heuristics in Paper IX

4.3.1 Classification of Backbone Traffic based on Connection Patterns

Paper IX: Heuristics to Classify Internet Backbone Traffic based on Connection Patterns

proposes a set of heuristics for classifying backbone-type data according to applications.

The proposed heuristics are mainly based on connection patterns of the Internet hosts ob-

served, but in some cases also take port numbers into account (listed in Table 4.1). As a

result, our heuristics do not require packet payloads, and are as such intended to provide

researchers and network operators with a comparable simple and yet relatively privacy sen-

sitive method to get insight into the type of data carried by their links. The heuristics work

on traces as short as 10 minutes, which allows operators to classify snapshots of their traf-

fic relatively fast, by only adjusting applied thresholds and parameters empirically. The

heuristics can be used to classify backbone traffic according to a number of applications,

including P2P traffic, web traffic and other common applications. Furthermore, we intro-

duced a rule that successfully identifies network attacks, which is an additional feature for

network operators and researchers interested in network security and intrusion detection.

We based some of the proposed heuristics on two existing methods [21, 124]. Since our

data did not include payload to perform validation with signature based methods, we had

to rely on the verification methods of these original heuristics. Additionally, we performed

a careful manual analysis of the resulting classification, pinpointing obvious cases of false

positives. Both previous sets of heuristics overestimated the number of P2P flows, mainly

because attacking traffic is not taken into account accordingly. By combining the successful

rules of the two methods and adding additional, necessary rules, we presented a set of re-

fined and updated heuristics, which we applied on the OptoSUNET traces from Spring 2006.
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Recently (during 2009), we got access to backbone traces including 40 bytes of packet

payload, which allowed us to compare the results of the heuristics proposed in Paper IX with

a signature-based method. The signature method used as ground-truth method was intro-

duced in Karagiannis et al. [24] and later refined and updated in Kim et al. [13]. The results

of a first comparison show that port-based heuristics (Table 4.1.a) perform accurately for

P2P traffic, but can only classify a small part of the P2P traffic, which was also confirmed

by Kim et al. However, the heuristics based purely on connection patterns in fact overes-

timate the fraction of P2P traffic on TCP. On the verification trace, the proposed heuristics

classified 89% of the traffic volume as P2P and left 2% unclassified. The signature-based

classification method however marked only 81% of the data as P2P, but left 5% of the traffic

unclassified. We believe that the resulting overestimation can be explained by three main

factors: (i) all parameters and thresholds have been optimized for the OptoSUNET 2006

datasets and have not been adjusted in this verification test; (ii) while the heuristics take

asymmetrical (thus unidirectional) flows into account, they work more accurately on bidi-

rectional flows. In the verification trace only about 30% of the traffic was carried in symmet-

rical (i.e., bidirectional) observed flows, in contrast to more than 75% on OptoSUNET 2006

traces used in VII and IX; (iii) we found that a part of the overestimate (2.5% of the total

traffic volume) was contributed by heuristic ’H3: Port Usage’. While this heuristic marked

a substantial number of actual P2P flows (often accompanied by additional P2P heuristics),

it turns out not be a strong indication for P2P applications by itself and needs to be refined

based on this ground-truth verification. Furthermore, we believe that heuristic ’H5: unclas-

sified, long flows’, an optional heuristic regarded as weak to start with, should not be used

anymore, since long lasting flows carrying substantial amounts of data can besides P2P be

generated by many other applications, foremost all types of streaming media applications.

4.3.2 Classification of Internet Traffic based on Statistical Features

Methods based on connection patterns require observation of multiple flows per communi-

cation endpoint in order to be able to infer the application used. Furthermore, the results

of the re-validation of the heuristics we presented in Paper IX confirmed our suspicion that

heuristic methods applied on connection patterns of Internet flows can only provide a very

rough traffic decomposition into traffic classes, but are not accurate enough to pinpoint ex-

act applications of single flows. But there are recent advances in traffic classification that

are promising to provide accurate and complete protocol identification on flows: statistical

methods using flow features such as packet-sizes and inter-arrival times [8, 121]; and pay-

load based approaches, which are often based on manually created payload signatures [22]

or automatically created signatures [143, 144]. Signature matching methods however are
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of limited use for classification of obfuscated or encrypted protocols, such as the BitTor-

rent Message Stream Encryption (MSE) [145], encrypted eDonkey [146], and Skype [147].

Another payload based approach was proposed by Dreger et al. [31]. The Dynamic Pro-

tocol Detection (DPD), part of the Bro IDS [137], parses byte streams dynamically with

chains of protocol analyzers in parallel until the application is identified. Protocol analyzers

apply a set of protocol detection heuristics, which currently includes mainly regular expres-

sion signatures. In Paper X we present an alternative method that combines statistical and

payload based methods, which has the goal to provide reliably identification of application

layer protocols within the first few packets of a flow without the need for manual creation

of signatures.

Paper X: Statistical Protocol IDentification with SPID: Preliminary Results presents SPID,

the Statistical Protocol Identification algorithm. The SPID framework utilizes various sta-

tistical packet and flow attributes (i.e., features) to identify application layer protocols by

comparison of probability vectors of attributes to protocol models of known protocols. We

can define these attributes by all sorts of packet and flow data, ranging from traditional sta-

tistical flow features to application-level characteristics, such as byte frequencies and offsets

for common byte-values. In this sense SPID is a hybrid technique, utilizing efficient generic

attributes, which can include deep packet inspection elements by treating them in the same

way as statistical flow properties. Even though SPID does not require complete payload, it

needs at least some payload from the first packets in each flow3 to work accurately.

We obtained initial results when identifying a small set of protocols within a pre-classified

set of flows collected by Szabo et al. [148] on an access link during 43 hours in October 2007

with capture length of 96 bytes per packet, i.e., 42 bytes of application header data. These

results were promising, showing 100% average precision with a recall of 92% for the five

protocols tested (BitTorrent, eDonkey, HTTP, SSL, SSH). In the paper we also discussed

interesting and relevant future directions with this approach, such as finding the optimal set

of the flow features used or testing the robustness of the algorithm against different network

environments, ranging from LAN to backbone links.

We believe that SPID has the potential to become a simple and efficient classification al-

gorithm, providing accurate and fine grained identification of network flows on application-

protocol level. Additional tests4 showed that SPID can provide classification accuracy of

>90% with high recall even for obfuscated and encrypted protocols that are hard to clas-

3The exact numbers of the parameters can be adjusted. In the preliminary tests, SPID analyzed 42 bytes of
payload in the first 20 packets of each session.

4Study under progress, thus indicated only briefly.
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sify, such as MSE BitTorrent, Skype, encrypted eDonkey and Spotify [149]. Note that we

performed these tests with an already reduced set of 12 attributes meters, combining only

a handful of features. First results indicated that attribute meters combining simple sta-

tistical flow features (i.e., packet directions and packets sizes) and payload features (i.e.,

byte frequencies and offsets) are powerful to accurately classify both obfuscated and non-

obfuscated traffic.
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Thesis Contributions and Findings

The objective of the thesis was to improve the understanding of Internet traffic character-

istics by measuring and analyzing modern Internet backbone data. The main contributions

of the thesis are the following:

• A discussion of design options and important considerations for passive Internet data

collection and measurement:

We critically discussed aspects of passive measurements on large-scale network links

and the lessons that were learned from our successful measurement project. These

lessons can serve as guidelines to others setting up and performing (future) passive

Internet measurements. Key findings are:

− We identified major obstacles to Internet data collection and sharing, including

legal, ethical, operational, technical, and economic challenges.

− We gave an overview of how to manage operational and technical challenges by

means of subtle engineering practices and trust relations to network operators.

However, we identified legal and ethical challenges as unsolved problems for

the research community; we managed them ourselves in an ad hoc fashion only.

− We highlighted the lessons we learned regarding the importance of shared data

for the validation and reproducibility of research results, but acknowledge that

we did not succeed in establishing clear policies to make our data accessible to

other researchers.

• A detailed header analysis of modern wide-area Internet traffic:

We revealed deployment of protocol-specific features and provided a systematic survey

of packet header anomalies. Key findings are:

− IPv4 packet size distribution is bi-modal, rather than tri-modal as it was observed

on several backbone links until the early 2000s.

− IP fragmentation, Explicit Congestion Notification (ECN) and IP options are

rarely used, but Path MTU Discovery and Selective Acknowledgement (SACK)

are prevalent.

47
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− We found protocol violating values in almost any header field, some of which

can be harmful. These fields include IP header length, address and fragmentation

fields; TCP port number, length, flags and option fields; UDP port number and

length fields; and ICMP length and type fields.

− We found many old, well known attack types but did not observe some formerly

popular attacks (e.g., Ping-of-death, IP source route exploit) in our data.

• A validation of common beliefs about Internet traffic on modern Internet data:

We provided a simple method and tool to assess and fairly compare flow-based routing

symmetry by passive measurements on specific links. We used the method to assess

flow routing symmetry on a large heterogeneous set of network traces. We also investi-

gated the usage of UDP on these traces and shed light on the assumption that TCP is the

dominant transport protocol on the Internet. While not all of the results are surprising,

they represent important data points and indicate global trends. Key findings are:

− Routing symmetry is uncommon on non-edge Internet links and decreases with

higher levels of “coreness”, i.e., as paths move toward highly aggregated links.

This implies that traffic analysis tools and methods should assume little routing

symmetry unless intended only for stub access links with no path diversity.

− TCP is the dominant transport protocol in terms of packets and bytes, but frac-

tions of UDP traffic show an increasing trend during the last seven years and are

already larger than TCP in terms of flow numbers. We attribute this development

to popular P2P applications using UDP for their overlay signaling traffic.

• A detailed analysis of Internet flows and connections:

We revealed differences between different classes of network traffic. Key findings are:

− Inbound traffic to the Swedish academic network includes several times more

"hostile" activities than outbound traffic, consistent with a higher degree of at-

tention to system configuration and administration on Swedish campus and stu-

dent networks.

− P2P, Web, and malicious traffic differ significantly in diurnal traffic pattern, TCP

option deployment, connection establishment and termination behavior.

• An assessment of state-of-the-art traffic classification methods:

We reviewed current traffic classification efforts and revealed shortcomings, i.e., lack

of publicly available modern reference data and a lack of standardized measures and

classification goals. We then proposed two classification methods: (i) a payload-

independent classification method for aggregated backbone traffic based on connec-
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tion patterns; and (ii) a classification method for fine grained protocol identification by

utilizing statistical packet and flow features. Key findings are:

− Connection pattern heuristics can classify traffic in a privacy sensitive way but

accomplish only coarse grained decomposition of backbone traffic. This method

is useful for providing quick insight into the type of data carried on large Internet

links and for estimating Internet background noise (background radiation [66]).

− Classification based on statistical features is a promising approach to reach suf-

ficiently accurate identification of individual application layer protocols, as re-

quired by many traffic management, security, and policy enforcement tasks. Pre-

liminary results indicate that SPID, our method, is capable of accurate classifi-

cation of most protocols in a simple and efficient way.
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6
Conclusions

Considering the role of the Internet as a critical infrastructure of global importance, we

claim that it is crucial for the Internet community to understand the nature and detailed

behavior of modern network traffic. A deeper understanding supports optimization and de-

velopment of network protocols and devices, and furthermore helps to improve the security

of network applications and the protection of Internet users. In this thesis, we therefore pre-

sented methods and results contributing additional perspectives on global Internet behavior

at different levels of granularity. We are confident that we advanced the understanding of

the modern Internet by presenting current characteristics of Internet traffic based on a large

amount of empirical data. Furthermore, we discussed methodological aspects of passive

Internet measurement and data collection.

This final section gives overall conclusions and lessons learned in carrying out the re-

search presented. We also emphasize the limitations of Internet measurement research,

which point to future research possibilities.

Traffic Analysis and Characterization

We started our traffic analysis efforts with a detailed investigation of individual packet head-

ers. While our study of different aspects of protocol deployment and header consistency

revealed answers, it (unsurprisingly) also brougth up new questions. To follow the resulting

learning curve, we had to zoom out to higher levels of data aggregation, first to the flow-level

and then to classes of Internet traffic. We have presented detailed Internet traffic character-

istics on both packet and flow granularities. The results, representing actual, empirically

measured properties of network traffic, are important for scientific network simulation and

modeling and are relevant as well for operational purposes such as network management,

traffic engineering, and network security.

In the course of our research, we gained experience in dealing with large-scale Internet

data. Measuring actual Internet traffic revealed a great deal of behaviors that do not follow

standards, which was at first somewhat unexpected for us as naive researchers expecting
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textbook behavior. Almost every possible inconsistency in protocol headers and connec-

tion signaling appears “in the wild”, highlighting the need for careful design and robust

implementation of network applications and infrastructure to keep them resilient against the

multitude of network attack types in the global Internet environment. The changing nature

of Internet traffic, with new protocols and applications appearing continuously, requires

ongoing revalidation of common assumptions. As indicated in the study of UDP traffic,

assumptions that have been valid for a long time can be misleading if they are not revisited

periodically and from varying vantage points.

In the MonNet project, we made most of the analyses with in-house tools developed

from scratch. Available tools, such as the CoralReef suite [79] or dagtools [36], have only

been used to validate the results from our own tools. The positive aspects of this approach

are that it allowed us to optimize the tools for each specific research question. Furthermore,

we learned a great deal by dealing with the detailed problems and pitfalls of handling vast

amounts of data. In fact, our experiences in developing tools to analyze the backbone traf-

fic traces described in Paper II inspired us to make a systematic investigation of header

anomalies presented in Paper III. Relying on in-house tools also has the advantage of high

transparency of the complete chain of data handling tasks, whereas using external tools and

APIs introduces the risk of misconceptions about data-handling details, which can produce

biased or incorrect results.

The choice to use our own tools also had a downside. Developing tools takes consid-

erably more time than building on top of existing tools and APIs. Early versions of our

tools could only handle certain header types and trace formats used on the specific link and

measurement hardware in our environment. We later increased the versatility of some tools

by integrating CoralReef libraries, which can handle many common link layer protocols

and trace formats. Another important aspect of standard tools and APIs is the possibility

to easily compare results with those from related tools. An example is the choice to use

our own bidirectional flow definition in Papers VI,VII and IX (described in Section 2.6).

While our definition proved to be useful to infer the connection behavior of TCP sessions, it

complicated the comparison of results with analysis tools based on standard flow definitions

such as Netflow or CoralReef’s Coralflow, which treat unidirectional flows, discriminated

by timeouts rather than by TCP signaling flags.

Traffic Classification

Our research results indicate that exploitation of statistical features is a promising method

for reliable traffic classification. This approach may prove useful especially in the face of

non-existing or obfuscated payload and further complicating circumstances such as unidi-



53

rectional traffic flows and large fractions of UDP traffic1, but it also requires at least partial

access to privacy sensitive packet payload. However, as part of the arms race mentioned

in Section 1.2.2, statistical features can also be obfuscated to some degree, e.g., by senders

deliberately varying inter-packet delays or randomly padding packet payloads. On he ba-

sis of our experiences, we believe that hybrid methods taking advantage of port number

information and connection patterns could further improve the performance of statistical

fingerprinting. Purely heuristic methods as proposed in Paper IX were too course grained

and inaccurate to be useful for traffic management purposes such as traffic shaping or traffic

differentiation. Due to their simplicity, such methods might still be practical for a basic

overview of rough traffic decomposition on a given link.

Besides the lack of common reference data, we found that traffic classification research

further suffers from a lack of standardized measures. Classification papers use a wide range

of performance metrics such as overall accuracy, precision, recall, F-measure [13]; accu-

racy, completeness [24]; hit ratio, false positive ratio [121]; and true positive, false pos-

itive [8]. Some of these metrics describe the same phenomena, but with different names.

Others are even defined differently. It is possible to convert some of the metrics to others

for purposes of comparison, but raw numbers would sometimes be required to perform this

task. In any case, we argue that the Internet measurement community would benefit from

a set of well defined performance metrics to facilitate straightforward comparison of clas-

sification results. Some researchers proposed traditional statistical classification measures

such as accuracy, recall and F-number [13], which we followed in this thesis (Paper X).

Traffic classification can be applied for various purposes (e.g., traffic management, traf-

fic engineering, security monitoring, accounting, policy enforcement) that require different

classification granularity. We find that the lack of singularly defined traffic classes further

amplifies the poor comparability of classification results. To give an example, for some

purposes, Skype traffic might be regarded as P2P traffic, but not P2P file sharing, while for

other purposes it could be classified as voice-over-IP. We believe that the research commu-

nity would benefit from a set of common definitions for traffic classes in different granular-

ities depending on the purpose. Traffic granularities could be (i) single protocols (e.g., for

security monitoring); (ii) network applications (e.g., for policy enforcement); and (iii) pro-

tocols merged into application classes (e.g., for traffic engineering and accounting), which

could be inspired by categories used in existing work [11].

1UDP traffic has no notion of sessions with a clearly defined start and end (thus unclear initiator/responder),

which complicates flow classification efforts.
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Internet Measurement: Data Collection and Access

To provide a better picture of the global Internet it is crucial to provide possibilities to

continuously monitor and collect Internet traffic from various vantage points. We have

presented our experiences from passive backbone data collection by breaking the main ob-

stacles down to separate challenges: economic, legal, ethical, operational, and technical

considerations. We conclude that measuring traffic on large-scale Internet links is a tedious

task, which can be both very expensive and time consuming. However, Internet measure-

ment research, empirical in nature, depends on the quality and diversity of available network

traces. We therefore identify a further challenge: the complications of sharing or providing

access to the tediously collected data, which is related to the legal and ethical limbo of sci-

entific Internet data collection. Lack of available datasets is a major shortcoming of current

traffic classification efforts as well as any other type of traffic analysis. Researchers should

not see sharing or providing access to network data only as a courtesy to the community.

In any field of experimental research, reproducibility of results is vital, and thus sharing of

data is a prerequisite for the scientific process [150]. Access to diverse datasets from real

world networks would allow investigation of traffic properties across measurement times

and locations and thus enable fair comparison of competing analysis methods on identical

reference data.

The status quo in the Internet measurement community is a few datasets from even fewer

vantage points available to researchers (Section 3.1). While packet traces with payload are

desirable for maximal research utility (see Section 1.5), they are also the most problematic

regarding privacy issues. But even packet-header traces, less problematic from a privacy

perspective but still relevant to many research problems, are hardly shared. We assume that

many researchers with access to data-collection infrastructure would like to share datasets,

both to add credibility to their own research results and as a service to the community. How-

ever, economic considerations together with the uncertain payoff result in a reluctance of

network operators to install measurement equipment for research usage beyond operational

requirements2. A further reason for the cautious and defensive attitude of potential data

providers is the uncertain legal situation and unclear ethical implications of data-sharing.

The MonNet project is one such example: while we managed to install measurement equip-

ment in the SUNET backbone to collect data, we have been subject to restrictions (i.e., data

anonymization and payload removal) even for our own data analysis efforts. We furthermore

failed to negotiate policies regarding sharing our data and were forced to act cautiously. As

a result, we can only offer simple mediated access (i.e.,“move code to data”) in an ad hoc

2Commercial Internet providers might additionally be reluctant to share data for competitiveness reasons.
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fashion to researchers asking for our data. While we experienced that we do not have enough

time and resources to act as data mediator for multiple data seekers at the same time, this

scalability problem in our case was diminished by the inert reactions of many data seekers

once we offered them the mediated “move code to data” solution.

To increase the credibility of Internet measurement as a research discipline, we there-

fore argue that it is essential for the research community to agree on ways to facilitate

the sharing of network data in a manner that balances the privacy requirements of data

owners and providers with the information requirements of researchers (i.e., ways to han-

dle the trade-off between data privacy and utility). We believe that current desensitiza-

tion and minimization methods (Section 3.2) ultimately need to be complemented by shar-

ing policies in order to mitigate the unavoidable vulnerabilities of these privacy protection

schemes [57, 58, 90]. We fear that purely technological approaches can not in the long run

sufficiently meet the privacy/utility trade-off without additional policy support [92]. First of

all, traffic anonymization, reduction and minimization methods can potentially leak infor-

mation in unexpected ways [130] or, as Allman and Paxson put it, “they [data providers] are

releasing more information than they think” [91]. And secondly, our experience showed

that even basic de-sensitization techniques reduce analysis possibilities. Thus, overcautious

application of minimization techniques are likely to limit the utility of the data and hinder

viable research.
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Abstract

Due to its versatility, flexibility and fast development, the modern Internet is far from being
well understood in its entirety. A good way to learn more about how the Internet functions
is to collect and analyze real Internet traffic. This paper addresses several major challenges
of Internet traffic monitoring, which is a prerequisite for performing traffic analysis. The
issues discussed will eventually appear when planning to conduct passive measurements on
high-speed network connections, such as Internet backbone links. After giving a brief sum-
mary of general network measurement approaches, a detailed overview of different design
options and important considerations for backbone measurements is given. The challenges
are discussed in order of their chronological appearance: First, a number of legal and ethical
issues have to be sorted out with legislators and network operators, followed by operational
difficulties that need to be solved. Once these legal and operational obstacles have been
overcome, a third challenge is given by various technical difficulties when actually mea-
suring high-speed links. Technical issues range from handling the vast amounts of network
data to timing and synchronization issues. Policies regarding public availability of net-
work data need to be established once data is successfully collected. Finally, a successful
Internet measurement project is described by addressing the aforementioned issues, provid-
ing concrete lessons learned based on experiences. As a result, the paper presents tutorial
guidelines for setting up and performing passive Internet measurements.

1 Introduction

The usage of the Internet has changed dramatically since its initial operation in the early-80s,
when it was a research project connecting a handful of computers, facilitating a small set of
remote operations. Today (2009), the Internet serves as the data backbone for all kinds of pro-
tocols, making it possible to exchange not only text, but also voice, audio, video and various
other forms of digital data between hundreds of millions of nodes, ranging from traditional
desktop computers, servers or supercomputers to all kinds of wireless devices, embedded sys-
tems, sensors and even home equipment.
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Traditionally, an illustration of the protocol layers of the Internet has the shape of an hour-
glass, with a single Internet Protocol (IP) on the central network layer and an increasingly wider
spectrum of protocols above and below. Since the introduction of IP in 1981, which is basically
still unchanged, technology and protocols have developed significantly. Underlying transmis-
sion media evolved from copper to fiber optics and WIFI, routers and switches became more
and more intelligent and are able to handle Gbit/s instead of Kbit/s and additional middleware
boxes have been introduced (e.g., NAT and firewalls). But also above the network layer new ap-
plications have constantly been added, ranging from basic services such as DNS and HTTP, to
recent, complex P2P protocols allowing applications such as file-sharing, video streaming and
telephony. With IPv6, even the foundation of the Internet is finally about to be substituted. This
multiplicity of protocols and technologies leads to an ongoing increase in complexity of the In-
ternet as a whole. Of course, individual network protocols and infrastructures are usually well
understood when tested in isolated lab environments or network simulations. However, their be-
havior when observed while interacting with the vast diversity of applications and technologies
in the hostile Internet environment is often unclear, especially on global scale.

This lack of understanding is further amplified by the fact that the topology of the Internet
was not planned in advance. It is the result of an uncontrolled extension process, where hetero-
geneous networks of independent organizations have been connected one by one to the main
Internet (INTERconnected NETworks). This means that each autonomous system (AS) has its
own set of usage and pricing policies, QoS measures and resulting traffic mix. Thus usage of
Internet protocols and applications is not only changing with time, but also with geographical
locations. As an example, Nelson et al. [1] reported about an unusual application mix on a
campus uplink in New Zealand due to a restrictive pricing policy, probably caused by higher
prices for trans-pacific network capacities at this time.

Finally, higher connectivity bandwidths and growing numbers of Internet users lead to in-
creased misuse and anomalous behavior [2]. Not only the numbers of malicious incidents keep
rising, but also the level of sophistication of attack methods and tools has increased. Today,
automated attack tools employ more and more advanced attack patterns and react on the deploy-
ment of firewalls and intrusion detection systems by clever obfuscation of their malicious inten-
tions. Malicious activities range from scanning to more advanced attack types such as worms
and various denial of service attacks. Even well-known or anticipated attack types reappear in
modified variants, such as the recent renaissance of cache poisoning attacks [3]. Unfortunately,
the Internet, initially meant to be a friendly place, eventually became a hostile environment that
needs to be studied continuously in order to develop suitable counter strategies.

Overall, this means that even though the Internet may be considered to be the most impor-
tant modern communication platform, its behavior is not well understood. It is therefore crucial
that the Internet community understands the nature and detailed behavior of modern Internet
traffic, in order to be able to improve network applications, protocols and devices and protect
its users.

The best way to acquire a better and more detailed understanding of the modern Internet
is to monitor and analyze real Internet traffic. Unfortunately, the above described rapid devel-
opment has left little time or resources to integrate measurement and analysis possibilities into
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Internet infrastructure, applications and protocols. To compensate for this lack, the research
community has started to launch dedicated Internet measurement projects, usually associated
with considerable investment of both time and money. However, the experiences from a suc-
cessful measurement project showed that measuring large-scale Internet traffic is not simple and
involves a number of challenging tasks. In order to help future measurement projects to save
some of their initial time expenses, this paper gives an overview of the major challenges which
will eventually appear when planning to conduct measurements on high-speed network con-
nections. Experiences from the MonNet project will then provide guidelines based on lessons
learned (Section 8).

1.1 How to read this paper

Section 2 gives an overview of different network traffic measurement approaches and method-
ologies. Sections 3-7 address the main challenges encountered while conducting passive In-
ternet measurements. The challenges are discussed in order of their chronological appearance:
First, a number of legal and ethical issues have to be sorted out with legislators and network op-
erators before data collection can be started (Sections 3 and 4). Second, operational difficulties
need to be solved (Section 5) such as access privileges to the network operator’s premises. Once
legal and operational obstacles are overcome, a third challenge is given by various technical dif-
ficulties when actually measuring high-speed links (Section 6), ranging from handling of vast
data amounts to timing issues. Next public availability of network data are discussed, which
should eventually be considered once data are successfully collected (Section 7). Section 8 then
outlines the MonNet project, which is the measurement project providing the experience for the
present paper. Each point from Sections 3 - 7 will be revisited and the specific problems and
solutions as experienced in the MonNet project are presented. These considerations are then
summarized presenting the most important lessons learned in each particular section, providing
a quick guide for future measurement projects. Finally, Section 9 discusses future challenges of
Internet measurement and concludes the paper.

2 Overview of network measurement methodologies

This section gives an overview of general network measurement approaches. The basic ap-
proaches are categorized among different axes and the most suitable methods for passive Inter-
net measurements according to current best practice are pointed out.

The most common way to classify traffic measurement methods is to distinguish between
active and passive approaches. Active measurement involves injection of traffic into the net-
work in order to probe certain network devices (e.g., PING) or to measure network properties
such as round-trip-times (RTT) (e.g., traceroute), one-way delay and maximum bandwidth.
Pure observation of network traffic, referred to as passive measurement or monitoring, is non-
intrusive and does not change the existing traffic. Network traffic is tapped at a specific loca-
tion and can then be recorded and processed at different levels of granularity, from complete
packet-level traces to statistical figures. Even if active measurement offers some possibilities
that passive approaches cannot provide, in this paper only passive measurement is considered,
which is best suitable for analysis of Internet backbone traffic properties.
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Passive traffic measurement methods can be further divided into software- and hardware-

based approaches. Software-based tools modify operating systems and device drivers on net-
work hosts in order to obtain copies of network packets (e.g., BSD packet filter [4]). While this
approach is inexpensive and offers good adaptability, its possibilities to measure traffic on high-
speed networks are limited [5]. In contrast, hardware-based methods are designed specifically
for collection and processing of network traffic on high-speed links such as an Internet back-
bone. Special traffic acquisition hardware collects traffic directly on the physical links (e.g.,
by using optical splitters) or on network interfaces (e.g., mirrored router ports). Since highly
specialized, such equipment is rather expensive and offers limited versatility.

Once network data are collected, it needs to be processed to fulfill its particular purpose.Traffic
processing can be done online, offline or in a combination of both approaches. Online pro-
cessing refers to immediate processing of network data in “real time”, which is essential for
applications such as traffic filters or intrusion detection systems. Sometimes only parts of the
data processing are done online, as typically done when collecting condensed traffic statistics or
flow-level summaries. Offline processing on the other hand is performed on network data after
it is stored on a data medium. Offline processing is not time critical and offers the possibility to
correlate network traffic collected at different times or different locations. Furthermore, stored
network data can be re-analyzed with different perspectives over and over again. These advan-
tages make offline processing a good choice for complex and time consuming Internet analysis.

Internet measurement can furthermore operate on different protocol layers, following the
Internet reference model [6]. While link-layer protocols dictate the technology used for the data
collection (e.g., SONET/HDLC, Ethernet), one of the most studied protocols is naturally the In-
ternet Protocol (IP), located on the network layer. The Internet measurement community also
shows great interest in the analysis of transport layer protocols, especially TCP and UDP. Some
Internet measurement projects have the possibilities to study all layers, including application
layer protocols. In practice, most measurement projects consider mainly network and transport
layer protocols due to privacy and legal concerns, as discussed later (Sections 3 and 4)

Data gathered on different protocol layers can present different levels of granularity. The
most coarse granularity is provided by cumulated traffic summaries and statistics, such as
packet counts or data volumes, as typically provided by SNMP [7]. Another common practice
is to condense network data into network flows. A flow can be described as a sequence of
packets exchanged between common endpoints, defined by certain fields within network and
transport headers. Instead of recording each individual packet, flow records are stored, contain-
ing relevant information about the specific flow. Such flow records can be unidirectional, as in
the case of NetFlow [8], or bidirectional, as used in different studies by MonNet [9, 10, 11].
The finest grained level of granularity is provided by packet-level traces. Packet-level traces
can include all information of each packet observed on a specific host or link. While such com-

plete packet-level traces offer the best analysis possibilities, they come along with a number
of technical and legal issues, as discussed in Chapters 3 - 6. It is therefore common practice
to reduce the stored information to packet headers up to a certain protocol level, e.g., including
network and transport protocols only, as done for the MonNet traces.
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Finally, packet-level network traces can be stored in different trace formats. Unfortunately,
there is no standardized trace format, so developers of trace collection tools historically defined
their own trace formats. The most popular trace format, especially common for traces from
local area networks (LANs), is the PCAP format, the format of the BSD Packet Filter and
TCPdump. For traces of wide area networks (WANs), an often used format was defined by
Endace, the Endace record format (ERF), formerly also known as DAG format. Other trace
formats seen in the Internet measurement community include CAIDA’s CORALReef format
CRL [12] or NLANR’s formats FR, FR+ and TSH. This diverseness in trace formats introduces
some problems, since publicly available analysis tools usually do not recognize all of these
formats, making conversion of traces from one format to another necessary. Since PCAP can be
seen as the de-facto standard, almost all conversion tools are able to convert their own format
to or from this format. Conversion, however, is usually not without cost. Different timestamp
conventions within the trace formats often lead to loss of timestamp precision, which should be
considered when performing timing sensitive operations.

3 Legal background

In this section the legal background of Internet measurement is presented, which is somewhat
in contrast to actual political developments and common academic practice. Current laws and
regulations on electronic communication rarely explicitly consider or mention the recording or
measurement of traffic for research purposes, which leaves scientific Internet measurement in
some kind of legal limbo. In the following paragraphs the existing regulations for the EU and
the US are briefly outlined in order to illustrate the legal complications network research is
struggling with.

3.1 European Union (EU) directives

Privacy and protection of personal data in electronic communication in EU countries are regu-
lated by the Directive 95/46/EC on the protection of personal data [13] of 1995 and the comple-
menting Directive 2002/58/EC on Privacy and Electronic Communications [14] of 2002. Data
retention regulations have recently been further amended with the Directive 2006/24/EC on the

retention of data generated or processed in electronic communication [15].

The Data protection directive (Directive 95/46/EC) defines personal data in Article 2a as
“any information relating to an identified or identifiable natural person (data subject)”. Be-
sides names, addresses or credit card numbers, this definition thereby also includes email and
IP addresses. Furthermore, data are defined as personal as soon as someone can potentially link
the information to a person, where this someone not necessarily needs to be the one possessing
the data. Processing of personal data are then defined in Article 2b as “any operation or set of

operations which is performed upon personal data, whether or not by automatic means, such as

... collection, recording, ...storage, ...”, which means that Internet traffic measurement clearly
falls into the scope of this directive. Summarized, Directive 95/46/EC defines conditions un-
der which the processing of personal data are lawful. Data processing is e.g., legitimate with
consent of the user, for a task of public interest or for compliance with legal obligations (Ar-
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ticle 7). Further conditions include the users (or “data subjects”) right for transparency of the
data processing activities (Articles 10 and 11), the user’s right of access to own personal data
(Article 12) and principles relating to data quality (Article 6). The latter describes that data are
only allowed to be processed for specified, explicit and legitimate purposes. However, further
processing or storage of personal data for historical, statistical or scientific purposes is not in-
compatible with these conditions, as long as appropriate safeguards for this data are provided
by individual member states.

The e-privacy directive (Directive 2002/58/EC) complements the data protection directive of
1995, targeting matters which have not been covered earlier. The main subject of this directive
is “the protection of privacy in the electronic communication sector”, which was required to be
updated in order to react on requirements of the fast changing digital age. In contrast to the data
protection directive, the e-privacy directive is not only applied to natural but also to legal per-
sons. Besides dealing with issues like treatment of spam or cookies, this directive also includes
regulations concerning confidentiality of information and treatment of traffic data. Some of the
regulations are especially relevant for Internet measurement. Specifically, Article 5 states that
“listening, tapping, storage or other kinds of interception or surveillance of communications

and the related traffic data by persons other than users” are prohibited, with the exception of
given consent by the user or the necessity of measures in order “to safeguard national security,

defense, public security, and the prevention, investigation, detection and prosecution of crim-

inal offenses” (Article 15(1)). Furthermore, Article 6(1) obliges service providers to erase or
anonymize traffic data when no longer needed for transmission or other technical purposes (e.g.,
billing, provision, etc.), again with the only exception of national security issues (Article 15(1)).

The data retention directive (Directive 2006/24/EC) was among others a reaction on recent
terrorist attacks (i.e., July 2005 in London), requiring communication providers to retain con-
nection data for a period of between 6 months and 2 years “for the purpose of the investigation,

detection and prosecution of serious crime"" (Article 1). When this directive was released in
March 2006, only 3 EU countries had legal data retention in force. The remaining countries
declared to postpone application of this directive regarding Internet access, Internet telephony
and Internet email, which was possible until 14 March 2009 according to Article 15(3). At
present (October 2009) 22 of the 27 EU countries have transposed the directive (at least partial,
as in the case of Luxembourg and the UK) by implementing the different national laws. The
remaining five countries (i.e., Austria, Greece, Ireland, Poland, and Sweden) have yet failed to
install national laws following the directive. An updated overview of national data retention
policies and laws can be found online at “Vorratsdatenspeicherung.de” [16].

For current measurement projects in EU countries these directives basically say that Internet
traffic measurement for scientific purposes requires user consent, since such projects are not
subject of national security. User content could e.g., be obtained by adding a suitable passage to
the “Terms of Service” signed by network users. Additionally, any individual member state has
the possibility to permit Internet measurement for scientific purposes if appropriate safeguards
are provided. With the introduction of the data retention directive, providers are legally required
to store connection data. However, in order to be able to actually execute this directive, a number
of technical challenges need to be solved first (Section 6). Experiences and lessons learned from
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scientific Internet measurement projects are therefore vital and further underline the relevance
of Internet measurement.

3.2 United States (US) laws

In contrast to the EU, privacy in the US is handled by a patchwork of case law, state and federal
industry-specific laws [17]. The overview of US privacy laws in the present paper will follow a
recent article by Sicker et al. [18], thereby focusing on federal laws of the US only (as opposed
to state laws), especially since they are probably best compared to the overarching EU direc-
tives. There are two relevant sets of federal US laws applying to Internet measurement: one for
real-time monitoring, and one for access to stored data.

When monitoring network traffic in real time, US laws distinguish between monitoring of
user content and non-content such as header data. Real-time content monitoring is regulated by
the Wiretap Act (18 U.S.C. §2511 [19]), basically stating that interception of communications
is prohibited. There are, however, some exceptions to this basic rule, including user consent of
at least one party of the communication as well as the providers’ right to protect their networks
and to help tracking culprits. Real-time monitoring of non-content (i.e., header data) was un-
regulated in the US until 2001, when the 9/11 attacks lead to the USA PATRIOT Act. This law
amended the Pen Register and Trap and Trace Act (18 U.S.C. §3127 [20]) in order to apply it
to recording or capturing of “dialing, routing, addressing, or signaling information” in context
of electronic communications, which clearly includes non-content such as packet headers and
IP address information. Consequently, also recording of packet header traces is prohibited in
the US since 2001. Again, user consent and provider monitoring are exceptions stated in the act.

Access to stored network data, i.e., sharing of data traces, is in US federal laws regulated by
the Electronic Communications Privacy Act (18 U.S.C. §2701-§2703 [21, 22, 23]). Basically,
it is prohibited for network providers to give away stored records of network activity, regardless
whether or not they include user content. Besides the exception of user consent there are two
further exceptions to this basic rule. First, this rule does not apply to non-public providers,
which means that data collected at private companies or organizations can be shared with other
organizations or researchers. Second, non-content records (e.g., header traces) can be shared
with anyone, with exception of the government. This leaves some uncertainty about the def-
inition of “government entities”, since scientific projects and researchers might be funded or
co-sponsored by governmental money.

3.3 Scientific practice

For researchers it is not always obvious which regulations are in force. The borders between
private and public networks as well as the difference between signaling or header data and
user content is sometimes blurred and fuzzy, which makes it difficult to relate to the correct
piece of law. This is especially true for amateurs in juristic matters, such as typical network
scientists. Common privacy protection measures have been surveyed on datasets used in 57
recent Internet measurement related articles in [18], showing that a majority of network traces
were collected on public networks and stored as packet headers only. Discussions about trace
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anonymization or the difference between content and non-content was brought up in very few
articles, probably due to page restrictions. However, it can be assumed that most researchers
are aware of their responsibility towards the users and are anxious about privacy concerns, as
described in Section 4.

As pointed out by Sicker et al. [18], often there is a “disconnect between the law and cur-

rent academic practice”. Even though leading researchers try to close the gap between Internet
researchers and lawyers by clarifying common misconceptions about the Internet [24], laws are
not likely to be changed in favor of scientific Internet measurement anytime soon. According
to Sicker at al. [18], a first important step towards de-criminalization of Internet measurement
could be a community-wide consensus about privacy-protecting strategies formulated in a pub-
lic document. Furthermore, the authors present some basic strategies for protecting user pri-
vacy, ranging from the often impossible task of getting user consent (e.g., signed “Terms of
Service”) to traditional de-sensitization techniques such as anonymization and data reduction
(see Sections 4 and 6.2). The network researcher’s motto should first of all be: Do no Harm!

Even though researchers might sometimes unavoidably operate in legal grey zones, it is likely
that no legal prosecution will be started as long as careful measures to avoid privacy violations
following “common sense” have been taken and no harm has been done.

In a recent paper, Kenneally and claffy go one step further and propose the Privacy-Sensitive
Sharing framework (PS2) [17], a framework supporting proactive management of privacy risks.
The proposed model is a combination of a policy framework that satisfies obligations of both
data seekers and data providers, and a technology framework able to enforce these obligations.
As a result, PS2 should reveal that actual data sharing is less risky (in form of privacy risks)
than not sharing data (and inability to understand and anticipate the Internet and its security
threads), especially when considering the importance of modern Internet as an underlying, crit-
ical infrastructure for economical, professional, personal, and political life [25].

4 Ethical and moral considerations

Besides potential conflicts with legal regulations and directives, Internet measurement activi-
ties raise also moral and ethical questions when it comes to privacy and security concerns of
individual users or organizations using the networks. These considerations include discussions
about what to store, how long to store and in which ways to modify stored data. The goal is
to fulfill privacy and security requirements of individuals and organizations, while still keeping
scientific relevant information intact. Since network data can potentially compromise user pri-
vacy or reveal confidential network structures or activities of organizations, operators usually
give permission to perform Internet measurement with at least one of the following restrictions:

1. keep raw measurement data secret;

2. de-sensitize the data, which can be done in one or both of the following ways:

(a) remove sensitive data (such as packet payload data) in packet-level traces;

(b) anonymize or de-identify packet traces and flow data.
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De-sensitization refers to the process of removing sensitive information to ensure privacy
and confidentiality. An example where un-desensitized measurement data are required would be
network forensics conducted by governmental authorities. In this case data are kept secret, i.e.,
it is accessed by a limited number of trusted persons only. Within research projects, however, it
is common that de-sensitization is required. Anonymization in this context refers to the process
of removing or disguising information which reveals the real identity of communication entities.
Some information, such as IP addresses, can be used to pinpoint individual users. This privacy
threat makes IP address anonymization a common requirement even for measurements which
are only kept internally, inside a network operator’s organization.

The above stated de-sensitization actions, payload removal and anonymization, might sat-
isfy both data providers (operators) and data seekers (researchers and developers) analyzing the
data. There are, however, a number of detailed questions that are not necessarily answered by
often imprecise and broadly stated policies. We discuss some important considerations below.

4.1 What to keep?

Even if it is decided to store packet header traces only, it is not always explicitly stated where
user payload really starts. A common way to interpret “packet headers” is to keep IP and TCP
(UDP) headers only, stripping off data after transport headers. However, one could argue that
application headers are technically not user payload, and therefore could be kept as well. This
may lead to problems in some cases (e.g., SMTP and HTTP headers), since a lot of sensitive
information can be found there. Other application headers, such as SSH and HTTPS, violate no
obvious privacy issues, assuming that IP address anonymization is done for all layers of packet
headers. Furthermore, application headers introduce practical problems since the number of
network applications is virtually infinite and not all applications use well defined headers. A
solution is to store the first N bytes of the payload following transport protocols. Saving the ini-
tial bytes of packet payloads is sufficient for classifying traffic using signature matching (shown
e.g., by Karagiannis et al.[26]) and offers a number of additional research possibilities, such
as surveying frequency and type of packet encryption methods. Even if packets with privacy-
sensitive application data (e.g., SMTP) would be treated differently and stored without any
payload beyond transport layer, there is still a large degree of uncertainty left about how much
sensitive information is included in unknown or undefined application payloads or malformed
packets not recognizable for the processing application. This remaining uncertainty might be
tolerable if traces are only accessed by a limited number of trusted researches, but is unsuitable
for traces intended to become publicly available.

Even if the boundary between packet header and packet payload is clearly defined for most
protocols (e.g., payload starts beyond transport layer), the researcher needs to decide how to
treat unusual frames, not defined within most available trace processing tools. One such ex-
ample is routing protocols such as CLNS routing updates (Connectionless Network Protocol)
and CDP messages (Cisco Discovery Protocol). Even if routing information is not revealing
privacy-sensitive data about individual users, it reveals important information about network
layout and topology, which in turn can be important input to de-anonymization attacks. An-
other example are all kinds of unknown or malformed headers, which might not be recognized
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by processing tools, but still contain sensitive information following malicious packet head-
ers [27]. Policies for how to treat this kind of packets include:

1. packet truncation by default after a specified number of bytes;

2. packet dropping (which should be recorded in the meta-data of the specific trace);

3. keeping the un-truncated packet (which might bear security and privacy risks).

Finally, privacy of datasets can be improved by removing network data from hosts with
unique, easy distinguishable behavior, as suggested by Coull et al. in [28]. Such hosts can
include DNS servers, popular HTTP or SMTP servers or scanning hosts. Obviously, this ap-
proach leaves a biased view of network traffic, which might be unsuitable for certain research
purposes. It is therefore crucial that removal or special treatment of packets from specially
exposed hosts is well documented and commented in the descriptions or the meta-data of the
respective network traces.

4.2 How to anonymize?

If anonymization of network traces is required, it still needs to be decided which header fields
to anonymize and how. Generally, it should be noted that “anonymization of packet traces is

about managing risk”, as pointed out by Pang et al. [29]. Datasets from smaller, local networks
might be more sensitive than data from highly aggregated backbone links when it comes to
attacks trying to infer confidential information such as network topologies or identification of
single hosts. Coull et al. [28] also showed that hardware addresses in link-layer headers can re-
veal confidential information, which is a problem for Ethernet-based measurements, but not for
Internet measurement on backbone links. Furthermore, the age of the datasets being published
plays an important role since the Internet has a very short-lived nature, and network architec-
tures and IP addresses change frequently and are hard to trace back. Generally, anonymization
is an important measure to face privacy concerns of users, even though it needs to be noted
that all proposed anonymization methods have been shown to be breakable to a certain degree,
given an attacker with sufficient know-how, creativity and persistency [28, 30, 31, 32]. This was
stated nicely by Allman and Paxson in [33], when saying that publisher of network traces "are

releasing more information than they think"!

Currently, the most common practice to anonymize packet headers is to anonymize IP
address information only, which is often sufficient for internal use (i.e., only results, but no
datasets will be published). As discussed above, in some situations when traces are planned
to be published, a more complete method is required, offering the possibility to modify each
header and payload field with individual methods, including email addresses, URLs and user-
names/passwords. Such a framework is publicly available and described by Pang et al. in [29].
However, how different fields are modified has to be decided by the researcher or agreed upon
in anonymization policies. The increasing importance of data anonymization for the Internet
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measurement community has recently resulted in the organization of a dedicated workshop on
Network data anonymization [34], which sets out to advance theory and practice of anonymiza-
tion as it applies to network data.

4.2.1 Anonymization methods

In the following paragraphs, we list and discuss some common methods to anonymize the most
sensitive information in packet headers, namely IP addresses. IP address anonymization is here
defined as the irreversible mapping between the real and the anonymized IP addresses.

1. One constant: The most simple method is to substitute all IP addresses with one con-
stant, which collapses the entire IP address space to one single constant with no infor-
mation content. A refined version of this method is to keep the first N bits of addresses
unmodified, and replace the remaining bits with a constant (e.g., set them to zero).

2. Random permutation: Another rather simple method is random permutation, which cre-
ates a one-to-one mapping between real and anonymized addresses. This method is only
irreversible given a proper secrecy concerning the permutation table. Furthermore the
subnet information implicitly included in the real addresses is lost.

3. Pseudonymization: The idea of random permutation is very similar to a method called
pseudonymization, where each IP address is mapped to a pseudonym, which might or
might not have the form of a valid IP address. It is only important that a one-to-one
mapping is provided.

4. Prefix-preserving anonymization: A special variation of pseudonymization has the prop-
erty of preserving prefix information, and is therefore referred to as prefix-preserving
anonymization. A prefix-preserving anonymization scheme needs to be impossible or at
least very difficult to reverse while maintaining network and subnet information, which
is crucial for a many different types of analysis.

(a) TCPdpriv: The first popular prefix-preserving anonymization technique was used in
TCPdpriv, developed by Minshall in 1996 [35]. The prefix preserving anonymiza-
tion function of TCPdpriv applies a table-driven translation based on pairs of real
and anonymized IP addresses. When new translations are required, existing pairs
are searched for the longest prefix match. The first k bits matching the already
translated prefix are then reused, and the remaining 32 − k bits are replaced with a
pseudo-random number and the address is added to the table. The drawback of this
approach is that the translations are inconsistent when used on different traces, since
translation depends on the order of appearance of the IP addresses. This problem can
be solved if translation tables are stored and reused. The approach, however, still
leaves the problem that traces cannot be anonymized in parallel, which is desired
practice when dealing with large volumes of Internet data.

(b) Crypto-PAn: The drawback of TCPdpriv was fixed by a Cryptography-based Prefix-
preserving Anonymization method, Crypto-PAn, described by Xu et al. in 2002 [30].
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Crypto-PAn offers the same prefix-preserving features as TCPdpriv, with the addi-
tional advantage of allowing distributed and parallel anonymization of traces. In-
stead of a table-driven approach, Crypto-PAn establishes a deterministic one-to-
one mapping by use of a key and a symmetric block cipher. This anonymization
key is the only information which needs to be copied when consistent anonymiza-
tion is done in parallel. Crypto-Pan is nowadays probably the most widely used
anonymization method, and has since been modified in order to suit specific re-
quirements, such as anonymization of flow data [36] or online anonymization of
traffic on 1 Gbit/s links [37].

4.2.2 Quality of anonymization

Recently, different successful attacks on IP addresses in anonymized traces have been pre-
sented [28, 31, 32, 38]. With the awareness of the weaknesses of anonymization methods, it
is important to establish policies and agreements between data-receivers and data-sharer not to
carry out de-anonymization attempts [17]. Furthermore, Pang et al. [29] argue that anonymiz-
ing IP addresses alone might not be enough to preserve privacy. Consequently, a framework
which allows anonymization of each header field according to an anonymization policy was
presented. They also propose a novel approach to IP address anonymization. External addresses
are anonymized using the widely used Crypto-PAn, while internal addresses are mapped to un-
used prefixes in the external mapping. Note, however, that this scheme does not preserve prefix
relationships between internal and external addresses, but is on the other hand less vulnerable
to certain types of attacks, as noted by Coull et al. [28].

At present, however, Crypto-PAn is still widely used and sets an de-facto standard for trace
anonymization. Thus proper handling of the anonymization key is another issue that needs to
be taken care of by researchers. The key is crucial, because with knowledge of the key is it
straight-forward to re-translate anonymized addresses bit by bit, which opens for a complete
de-anonymization of the trace. The safest solution is to generate a new key for each trace
anonymization procedure, which is destroyed immediately after the anonymization process.
Obviously, this approach would not provide consistency between different anonymized traces,
which is one of the main features of Crypto-PAn. It is possible to re-use a single key across
traces taken on different times or locations. In such setups, access to this key needs to be highly
restricted, and clear policies for scenarios involving duplication of the key (e.g., for parallel
anonymization purposes) are required.

4.3 Temporary storage

After discussing different considerations regarding payload removal and anonymization, it is
still an open question when these operations should be performed. If a policy or an agree-
ment with the network operator states that network data are only allowed to be stored if it is
payload-stripped and anonymized, does this mean that unprocessed traces are not allowed to be
recorded on mass storage devices at all? If so, is there sufficient computational power to pro-
cess potentially huge amounts of Internet traffic in “real time” during the collection process?
And if temporary storage of raw-traces is necessary for processing purposes, how long does
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“temporary” really mean? Does the processing (payload removal and anonymization) need to
be started immediately after finishing the collection? And how to proceed in case of processing
errors, which might require manual inspection and treatment? When is it safe to finally delete
unprocessed raw-traces? Such detailed questions are not always answered by existing policies,
so it is often up to the researchers to make adequate, rational choices in order to minimize the
risks of violating privacy and confidentiality concerns of users and organizations.

4.4 Access and security

Since network data can contain a number of sensitive and confidential information, it is crucial
to prevent unauthorized access to (raw) trace data. In case where traces are regarded as very
sensitive, it might even be necessary to encrypt the archived network data. If data needs to be
copied, there should be clear hand-over policies, which help to keep track of the distribution of
datasets. Additionally, the monitoring equipment and measurement nodes need to be secured
carefully, since access to functional measurement nodes is probably an even better source to
attackers than already collected traces. For measurement equipment and data the same secu-
rity measures as for all sensitive data centers should be applied. Besides restricting physical
access to facilities housing measurement equipment and storage, also network access needs to
be strictly regulated and monitored. Finally, especially in case of discontinuous measurement
campaigns, measurement times should be kept secret to minimize the risk of de-anonymization
attacks involving identifiable activities during the measurement interval.

5 Operational difficulties

Data centers and similar facilities housing networking equipment are usually well secured and
access rights are not granted easily, which is especially true for external, non-operational staff,
such as researchers. Often it is required that authorized personnel are present when access to
certain premises is needed. This dependency makes planning and coordination difficult and
reduces flexibility and time-efficiency. Flexibility constraints are further exaggerated by the
geographic location of some premises, since they are not necessarily situated in close proximity
to the researcher’s institute. Moreover, some significant maintenance tasks, such as installation
of optical splitters, require interruption of services, which is undesired by network operators.

The above indicated operational difficulties suggest the need of careful planning of mea-
surement activities, including suitable risk management such as slack time and hardware redun-
dancy when possible. Generally, the sparse on-site time should be utilized with care in order
to disturb normal operations as little as possible. A good way of doing so is to use hardware
with remote management features, providing maximum control of operating system and hard-
ware of the installed measurement equipment. Such remote management capabilities should
include possibilities to reset machines and offer access to the system console, independent from
operating systems.

A final challenge in planning Internet measurements is the short-lived nature of network
infrastructure, which might influence ongoing measurement projects depending on their spe-
cific measurement locations. Generally, measurements are carried out in a fast changing en-
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vironment, including frequent modifications in network infrastructure and equipment but also
changes in network topologies and layouts. This changeful nature of network infrastructure
is especially cumbersome for projects intended to conduct longitudinal measurements. Some
changes in network infrastructure might not only require modifications or replacement of mea-
surement equipment, but also hamper unbiased comparison of historical data with contemporary
measurement data.

6 Technical aspects

Measurement and analysis of Internet traffic is not only challenging in terms of legal and op-
erational issues, but also it is above all a technical challenge. In the following subsections we
first discuss methods to physically access and collect network traffic. We will then provide dis-
cussions about other important aspects regarding Internet measurement, including strategies to
cope with the tremendous amounts of data and some considerations for how to get confidence in
the measured data. Finally, we will discuss the important challenge of timing and synchroniza-
tion. Timing is an important issue in network measurement, especially when timing-sensitive
correlation of different traffic traces is required, such as passive one-way delay (OWD) mea-
surements or when merging network traces measured on links of opposite direction.

6.1 Traffic access methods

On shared-medium protocols such as Ethernet, passive measurements can be carried out by
all nodes connected to the medium via commodity network interface cards (NICs) running in
promiscuous mode. Unfortunately, NICs are not designed for monitoring purposes and do not
offer effective and precise recording of network traffic (e.g., imprecise timestamp generation
as discussed in 6.4.2 or unreported packet loss). In Ubik and Zejdl [5] it was shown that it is
theoretically possible to monitor 10 Gbit/s links with commodity NICs (which currently can
support up to 10 Gbit/s for Gigabit-Ethernet). This, however, comes with the cost of high CPU
load1 and the mentioned precision deficiencies.

Specialized traffic monitoring hardware on the other hand can provide precise traffic collec-
tion without putting extra CPU load on the monitoring host, which can then be used to perform
online traffic processing instead. Currently, the most common capture cards for high-speed
network measurements are Endace DAG cards [39], but also other companies offer such equip-
ment, such as Napatech [40] or Invea-Tech [41]. Modern capture cards provide lossless, full
packets data collection with precise timestamping and filtering capabilities for link speeds of
up to 10 Gbit/s. These cards also report about collection problems such as dropped packets
and checksum errors. Endace recently even released a capture box for 40 Gbit/s linespeed [42],
which is essentially splitting 40 Gbit/s input into 4 x 10 Gbit/s output, which can then be stored
and processed by 10 Gbit/s measurement nodes.

For measurements on fibre or switched connections running point-to-point protocols (e.g.,
High-level Data Link Control, HDLC), physical access to the network traffic can be gained in
three ways:

1Ubik and Zejdl report about CPU usage of up to 64% on two Intel Xeon 5160 dual-core 3.00 GHz CPUs for
the recording of full packets.
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1. Port mirroring: Network devices (typically switches, but also routers) send copies of
all packets seen on one or more specific port(s) to a single monitoring port to which a
measurement/collection device is connected. The main advantage of this solution is its
simplicity and its low cost, since many network devices support this feature out-of-the-
box (e.g., Cisco’s SPAN-Switch Port ANalyser feature). Furthermore, port mirroring can
be remotely administrated and is thus relatively flexible in its configuration. However,
there are a number of drawbacks that need to be considered before deciding to use this
traffic access method:

• Performance: the mirroring process is an additional burden to the network device’s
CPU and backplane, which might result in degradation of network performance,
especially for heavily utilized devices.

• Packet loss: if the aggregated traffic from the mirrored ports exceeds the capacity
of the monitoring ports, packets will be dropped.2 Even if the capacity of the mon-
itoring port is dimensioned properly, network devices under heavy load might drop
packets silently due to the additional CPU burden, which is not of high priority for a
network device designed to facilitate traffic transport rather than traffic monitoring.

• Packet timing and ordering: since network devices need to buffer packets from the
mirrored links before forwarding them to the monitoring link, timing of packets is
affected. As shown in Zhang and Moore [43], port-mirroring on two switches from
different vendors introduced significant changes to inter-packet timing and packet-
re-ordering, even at very low levels of utilization. These results imply that port-
mirroring is likely to introduce bias for all analyzing purposes that include packet
inter-arrival time statistics or rely on proper packet arrival order (such as analysis of
TCP sequence numbers).

• Omitted packets: packets with errors in the lower layers of the protocol stack (lay-
ers 1 and 2) are usually dropped by network devices and thus not mirrored, which
disqualifies port-mirroring for low-layer troubleshooting and debugging purposes.

2. Port mirroring on dedicated box: small switches dedicated to mirror link(s) are also called
aggregation TAPs (Test Access Ports). The main advantage of this solution is increased
buffer sizes and a dedicated CPU and backplane, offering some protection against packet
loss. However, since this solution requires additional hardware expenses while still not
resolving many problems with port mirroring on network devices (packet timing and
ordering, omitted packets), it is seldom applied in existing studies dealing with measured
network data.

3. Network TAP: a network TAP is a device intercepting traffic on a network link, analo-
gous to telephone taps. TAPs are available for copper and optical fiber supporting up to
10Gbit/s. TAPs split the incoming signal into two signals, one signal continuing on the
network link and the other signal passed on to a measurement/collection device. While
copper TAPs use electronic circuits for duplication, fiber TAPs optically split the signal

2Mirroring a full-duplex port requires twice the capacity on the monitoring port (one link in each dir.)
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and are thus called optical splitters. For duplex links, each direction needs to be tapped
individually, and the resulting traffic stream might or might not be merged in the attached
measurement device, depending on the specific measurement purpose. Such passive TAPs
are non-intrusive and do not interfere with the data or the timing of the data, eliminating
most of the drawbacks with port-mirroring. However, in addition to the extra cost, instal-
lation of passive TAPs results in a service disruption of the links monitored. Furthermore
amplifiers for the optical signal might be required in order to compensate for the power
loss due to the optical splitter.

6.2 Data amount

The amount of data carried on modern Internet backbone links makes it non-trivial to record.
This will continue to be a challenge in the foreseeable future, since backbone link bandwidths
increase in at least the same pace as processing and storage capacities, with 10 Gbit/s links
established as state-of-the-art, 40 Gbit/s links already operational and 100 Gbit/s links planned
to be introduced in 2010.

6.2.1 Hardware requirements

Increasing link speeds will emphasize hardware requirements of measurement nodes. Some
examples of possible bottlenecks within measurement hardware are listed below:

1. I/O bus: If high-capacity backbone links operate in full speed, contemporary I/O bus ca-
pacities (e.g., 8 Gbit/s theoretical throughput for PCI-X or 16 Gbit/s for 8-lane PCIe 1.x)
are hardly sufficient to process data from complete packet header traces. This insuffi-
ciency is even more severe when the data needs to pass the bus twice, once to the main
memory and another time to secondary storage. Cutting edge PCIe 2.0 or the upcoming
PCIe 3.0 featuring 16 or 32 lanes with theoretical throughputs of up to 8 Gbit/s per lane
might overcome this bottleneck for current link speeds.

2. Memory speed: If the measurement host’s main memory is used to buffer traffic before
writing it to disk (e.g., to handle bursts in link utilization), it needs to be considered
that memory access speeds do not develop in the same pace as link capacities. Modern
DDR2-1066 SDRAM DIMMs offer theoretical transfer rates of 68 Gbit/s (8533 MB/s),
which would not be sufficiently fast to buffer data from 100 Gbit/s links on full capac-
ity. Only DDR3 SDRAM technology might nominally overcome the 100 Gbit/s border,
with I/O clock speeds of up to 800 Mhz (offering transfer rates of 12,800 MB/s or 102.4
Gbit/s). DDR3 DIMMs are expected to penetrate the market throughout the year 2010.
However, it is not enough to store data in memory, it eventually also needs to be read out
on disks, which doubles the data-rate required. On the other hand, utilization of memory
interleaving between multiple memory banks is a common technique to increase memory
throughput on many motherboards/chipsets.
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3. Storage speed: Even if the I/O bus bottleneck could be overcome, the speed of storage
array systems would not suffice. Modern storage array network (SAN) solutions offer in
the best case 10 Gbit/s rates. Traditional SCSI systems provide nominal throughput rates
of around 5 Gbit/s (e.g., Ultra-640 SCSI), and cutting-edge serial buses such as SAS-2.0
(serial attached SCSI) and SATA (serial ATA) reach 6 Gbit/s. Transfer rates for single
hard disks range from around 110 MB/s for good disks with 7200 RPM (revolutions per
minute) to 170 MB/s sustained transfer rates for the latest 15,600 RPM drives, which can
be scaled up by deployment of RAID disk arrays (e.g., RAID-0). These throughput rates
could potentially cope with complete packet-level traces of 10 Gbit/s links, but cannot
keep up with higher link rates.

4. Storage capacity: All these considerations still do not take the required storage capacity
into account. Longitudinal measurement campaigns, recording up to several Gigabytes
of network data per second, are non-trivial tasks and will eventually be limited by storage
capacities.

The discussion provided above shows that recording of complete packet-level traces is
strictly bounded by hardware performance, even if it may theoretically be matched with today’s
hardware. Fortunately, backbone links are typically over-provisioned, and average throughput
is far from line-speed. Even though this fact alleviates some technical problems (e.g., storage
capacity), measurement nodes still need to be able to absorb temporary traffic bursts. If such
traffic amounts cannot be handled, random and uncontrolled discarding of packets will take
place, resulting in incomplete, biased datasets, which is highly undesirable with respect to the
accuracy of scientific results.

6.2.2 Traffic data reduction techniques

As shown, measurement of complete packet-level traces is technically not always feasible. In
the following paragraphs some approaches aiming to reduce data amounts while still preserving
relevant information are presented.

1. Filtering: If network data are collected with a specific, well defined purpose, traffic fil-
tering is a valid solution to reduce data amounts. Traffic can be filtered according to
hosts (IP addresses) or port numbers, which is probably the most common way to filter
traffic. But also other arbitrary header fields or even payload signatures can be used as
filter criteria. This was already successfully demonstrated by a very early study about
Internet traffic characteristics, carried out by Paxson [44]. In this work, only TCP packets
with SYN, FIN or RST packets were considered for analysis. Filtering only packets with
specified properties can be done in software (e.g., BSD packet filter [4]), which is again
limited by processing capabilities, or in hardware (e.g., by FPGAs), which can provide
traffic classification and filtering according to a set of rules up to 10 Gbit/s line speeds
(e.g., Endace DAG cards [39]).
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2. Sampling: Another method to reduce data amounts of packet-level traces is packet sam-
pling. Packet sampling can be done systematically, in static intervals (record every Nth
packet only) or in random intervals, like proposed by sFlow [45]. Alternatively, also more
sophisticated packet sampling approaches have been proposed, such as adaptive packet
sampling [46]. A good overview of sampling and filtering techniques for IP packet selec-
tions can be found in a recent Internet draft by Zseby et al. [47].

3. Packet truncation: A common tradeoff between completeness of packet-level traces and
hardware limitations is to truncate recorded packets after a fixed number of bytes. De-
pending on the chosen byte number, this approach is either not guaranteeing preservation
of complete header information or includes potentially privacy-sensitive packet payloads.
To address this dilemma, it is common practice to truncate packets in an adaptive fashion,
i.e., to record packet headers only. As discussed in Section 4.1, stripping of payload data
has also the advantage of addressing privacy concerns. The processing of packets, i.e.,
the decision of what to keep and where to truncate, can in the best case be done online,
especially if hardware support is given. Alternatively, packets can be truncated after a
specified packet length of N bytes, and removal of payload is then done during offline
processing of the traces.

4. Flow aggregation: As discussed in Section 2, a common way to reduce data while still
keeping relevant information is to summarize sequences of packets into flows or sessions.
The advantage is, that classification of individual packets into flows can be done online,
even for high-speed networks due to optimized hardware support of modern measurement
equipment. This means that the measurement hosts only need to process and store reduced
information in form of flow records, which is no burden even for off-the-shelf servers.
Flow records can also be provided by the network infrastructure itself (e.g., by routers),
which explains why the most common flow record format NetFlow [48] was developed
by Cisco. In 2006, the IETF proposed IPFIX [49] as universal flow standard, which is
actually derived from NetFlow v9. Even though usage of flow records is already reducing
data amounts, various sampling techniques have been proposed for flow collection as
well. Flow sampling approaches include random flow sampling (e.g., NetFlow), sample
and hold [50] and other advanced sampling techniques, such as in [46, 51, 52].

6.2.3 Archiving of network data

Since measuring Internet traffic is a laborious and expensive task, measurement projects some-
times want to archive not only their analysis results, but also the raw data, such as packet-level
traces or flow data. Archiving raw data can be important for several reasons:

1. keeping scientific results reproducible;

2. allowing comparisons between historical and current data;

3. making additional analysis regarding different aspects possible;

4. sharing datasets with the research community, as discussed in Section 7.
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Archiving network traces is not always a trivial task, especially for longitudinal, continuous
measurement activities. A complete description of different archiving solutions is not within the
scope of this paper, but it is recommended to consider risk management such as error handling
and redundancy. Data redundancy can be provided by suitable RAID solutions or by periodic
backups on tertiary storage such as tape libraries. To further reduce data amounts, compression
of traffic traces and flow data for archiving purposes is common practice. Standard compres-
sion methods (e.g., Zip) reduce data amounts to 50%, which can be further optimized to 38%
as shown in [53]. When network data are archived, it is also crucial to attach descriptive meta-
data to datasets, as argued by Pang et al. [29], Paxson [54], and Cleary et al. [55]. Meta-data
should include at least descriptions of the measurement and processing routines along with rel-
evant background information about the nature of the stored data, such as network topology,
customer breakdown, known network characteristics or uncommon events during the measure-
ment process. To avoid confusion, Pang et al. recommend to associate meta-data to datasets by
adding a checksum digest of the trace to the meta-data file.

6.3 Trace sanitization

We define trace sanitization as the process of checking and ensuring that Internet data traces
are free from logical inconsistencies and are suitable for further analysis. Hence, the goal of
trace sanitization is to build confidence in the data collection and preprocessing routines. It is
important to take various error sources into account, such as problems with measurement hard-
ware, bugs in processing software and malformed or invalid packet headers, which need to be
handled properly by processing and analysis software. Consistency checks can include check-
sum verification on different protocol levels, analysis of log files from relevant measurement
hard- and software and ensuring timestamp consistency. Furthermore, an early basic analysis
of traces can reveal unanticipated errors, which might require manual inspection. Statistical
properties and traffic decompositions which highly deviate from “normally” observed behavior
very often reveal measurement errors (such as garbled packets) or incorrect interpretation of
special packets (such as uncommon or malformed protocol headers). Obviously, the results of
the trace sanitization process including a documentation of the sanitization procedure should be
included into the meta-data of the dataset. An example of a sanitization procedure is described
in Section 8.4. Another example of an automated sanitization process is provided by Fraleigh et
al. in [56], and a more general discussion about sanitization can be found in Paxson’s guidelines
for Internet measurement [54].

6.4 Timing issues

Internet measurement has an increasing need for precise and accurate timing, considering that
small packets of e.g., 40 bytes traveling back to back on 10 Gbit/s links arrive with as lit-
tle as 32 nanoseconds (ns) time difference. For each packet a timestamp is attached when
recorded, which forms the basic information resource for analysis of time related properties
such as throughput, packet-inter-arrival times and delay measurements. Before discussing dif-
ferent timing and synchronization issues occurring in Internet measurement, it is important to
define a common terminology about clock characteristics. Next, an overview of timestamp for-
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mats will be given, including the important question of when timestamps should be generated
during the measurement process. After presenting common types of clocks, this subsection
gives a discussion of how accurate timing and clock synchronization can be provided.

6.4.1 Time and clock terminology

First of all it is important to distinguish between a clock’s reported time and the true time as
defined by national standards, based on the coordinated universal time (UTC 3). A perfect clock
would report true time according to UTC at any given moment. The clock terminology defini-
tions provided below follow Mills’ network time protocol (NTP) version 3 standard [57] and
the definitions given by Paxson in [58].

• A clock’s resolution, called precision in the NTP specification, is defined by the smallest
unit a clock time can be updated, i.e., the resolution is bounded by a clock “tick”.

• A clock’s accuracy tells how well its frequency and time compare with true time.

• The stability of a clock is how well it can maintain a constant frequency.

• The offset of a clock is the differences between reported time and true time at one particular
moment, i.e., the offset is the time difference between two clocks.

• A clock’s skew is the first derivative of its offset with respect to true time (or another clock’s
time). In other words, skew is the frequency difference between two clocks.

• A clock’ drift furthermore is the second derivative of the clock’s offset, which means drift
is basically the variation in skew.

6.4.2 Generation and format of timestamps

Regardless of how timing information is stored, it is important to understand which moment in
time a timestamp is actually referring to. Packets could be timestamped on packet arrival of the
first, the last or any arbitrary bit on the link. Software-based packet filters, such as the BSD
packet filter [4], commonly timestamp packets after receiving the end of an arriving packet.
Furthermore, software solutions often introduce errors and inaccuracies, since arriving packets
need to be transported via a bus into the host’s main memory, accompanied by an undefined
waiting period for a CPU interrupt. Additionally, buffering of packets in the network card
can lead to identical timestamps for a number of consecutive packets. These sources of errors
are typically not an issue for hardware solutions, such as Endace DAG cards [39]. Another
difference is that dedicated measurement hardware generates timestamps on the beginning of
packet arrival. If it is for technical reasons not possible to determine the exact start of a packet,
timestamps are generated after arrival of the first byte of the data link header (e.g., HDLC), as
done by DAG cards for PoS (Packet over SONET) packets [59].

There are also different definitions of how time is represented in timestamps. The traditional
Unix timestamp consists of an integer value of 32 bits (later 64 bits) representing seconds since

3UTC is derived from the average of more than 250 Cesium-clocks situated around the world.
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the first of January 1970, the beginning of the Unix epoch. The resolution presented by this
timestamp format is therefore one second, which is clearly not enough to meet Internet mea-
surement requirements. PCAP, the trace format of the BSD packet filter, originally supported 64
bit timestamps that indicated the number of seconds and microseconds since the beginning of
the Unix epoch. A more precise time stamp format was introduced with NTP [57], representing
time in a 64 bit fixed-point format. The first 32 bits represent seconds since first of January
1900, the remaining 32 bits represent fractions of a second. In Endace ERF trace format, a very
similar timestamp scheme is used, with the only difference that ERF timestamps count seconds
from the start of the Unix epoch (January 1st 1970). These formats can store timestamps with
a resolution of 232 pico seconds (1s/232). Currently, the most advanced hardware can actually
use 27 bits of the fraction part, providing a resolution of 7.5 ns [60]. Future improvements
of clock resolutions will require no modification of timestamp or trace formats but only take
advantage of the currently unused bits in the fraction part. Note that the different timestamp
formats within different trace formats can have negative effects on trace conversion (Section 2).
Converting ERF traces into PCAP traces might imply an undesired reduction of precision from
nanosecond to microsecond scale.

6.4.3 Types of clocks

Current commodity computers have typically two clocks. One independent, battery powered
hardware clock and the system, or software clock. The hardware clock is used to keep time when
the system is turned off. Running systems on the other hand typically use the system clock only.
The system clock, however, is neither very precise (with resolutions in the millisecond range),
nor very stable, with significant skew. In order to provide higher clock accuracy and stability for
network measurements, Pasztor and Veitch [61] therefore proposed to exploit the TSC register,
a special register which is available on many modern processor types. Their proposed software
clock counts CPU cycles based on the TSC register, which offers nanosecond resolution, but
above all a highly improved clock stability, with a skew similar to GPS synchronized solutions.

Since tight synchronization is of increasing importance, modern network measurement hard-
ware incorporates special timing systems, such as the DAG universal clock kit (DUCK) [59, 60]
in Endace DAG cards. The most advanced DUCK clocks currently run at frequencies of 134
MHz, providing a resolution of 7.5 ns, which is sufficient for packets on 10 Gbit/s links. The
DUCK is furthermore capable of adjusting its frequency according to a reference clock which
can be connected to the measurement card. Reference clocks (such as a GPS receiver or an-
other DUCK) provide a pulse per second (PPS) signal, which provides accurate synchronization
within two clock ticks. For 134 MHz oscillators this consequently means an accuracy of ± 15ns,
which can be regarded as very high clock stability.

6.4.4 Clock synchronization

How accurate clocks need to be synchronized when performing Internet measurements depends
on the situation and the purpose of the intended analysis. For throughput estimation, microsec-
ond accuracy might be sufficient. On the other hand, some properties, such as delay or jitter on
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high-speed links, often require higher accuracy. In situations with a single measurement point,
instead of accurate timing it might be more important to provide a clock offering sufficient sta-
bility. Other situations require tight synchronization with true time, while sometimes it is more
important to synchronize two remote clocks, and true time can actually be disregarded. In the
following paragraphs, we first present some ways of how to synchronize clocks with each other
(where one clock might in fact represent true time). This discussion includes an interesting
solution to synchronize measurement hardware located in close proximity, which is especially
useful when traces recorded on two unidirectional links need to be merged. Finally, methods
allowing correction of timing information retrospectively are presented, which is used to adjust
one-way-delay measurements, but can also be applied on passive traffic measurements involv-
ing remote measurement locations.

6.4.4.1 Continuous clock synchronization

1. NTP: The most common way to synchronize a clock of a computer to a time reference
is the network time protocol NTP [57]. NTP is a hierarchical system, with some servers
directly attached to a reference clock (e.g., by GPS). Such directly attached servers are
called stratum 1 servers. This timing information is then distributed through a tree of NTP
servers with increasing stratum numbers after each hop. Depending on the type of the net-
work, the distance to the NTP server and the stratum number of the server, NTP can pro-
vide clients with timing accuracy ranging from one millisecond to tens of milliseconds.
However, forms of clock skew, drift and jumps despite usage of NTP have been reported
by Paxson in [58]. These observations lead to the recommendation to disable NTP syn-
chronization during measurement campaigns, thus providing NTP synchronization only
before and after measurement intervals.

2. GPS: Since the propagation of timing information over networks obviously limits the ac-
curacy of NTP synchronization, some measurement projects directly attach GPS receivers
to their measurement equipment. The global positioning system, GPS, is basically a nav-
igation system based on satellites orbiting the earth. The satellites broadcast timing in-
formation of the atomic clocks they carry. GPS receivers, however, can not only be used
for positioning, but they can also be used as a time source since highly accurate timing
information is received in parallel. GPS receivers can therefore provide clock synchro-
nization within a few hundreds of nanoseconds. Unfortunately, GPS receivers require line
of sight to the satellites due to the high frequencies of the signals, which means that GPS
antennas normally must be installed outside buildings, ideally on the roof. This can be a
severe practical problem, especially for measurement equipment located in data centers
in the basement of high buildings.

3. Cellular networks: To overcome the practical problems of GPS, it is possible to use
signals of cellular telephone networks, such as code division multiple access (CDMA)
as synchronization source for measurement nodes (e.g., provided by [62]). Base stations
of cellular networks are all equipped with GPS receivers to retrieve timing information.
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This information is then broadcasted as a control signal within the network. Since base
stations operate on lower frequencies, it is possible to use these base stations as timing
sources even inside buildings. The accuracy provided by CDMA time receivers is very
close to GPS standards. However, due to the unknown distance to the base station, clocks
synchronized by CDMA will have an unknown offset from UTC. Furthermore, the offset
is not guaranteed to be constant, since receivers in cellular networks can switch between
base stations for various reasons.

4. SDH protocol: A recently proposed approach distributes time from an UTC node using
existing backbone communication networks, such as OC192 links. This system yields
an accuracy of a few nanoseconds, which is done by utilizing the data packages already
transmitted in the system [63]. To our knowledge, this novel approach has not been
used in Internet measurement yet, but it might be an interesting alternative for upcoming
measurement projects.

5. Daisy-chaining of timestamping clock: Endace DAG cards offer an additional solution
for clock synchronization, which is very attractive for measurement hosts located in close
proximity. The DUCK, a clock kit on every DAG cards, offers also output of PPS sig-
nals [60]. This feature can be used to chain DAG cards together by simple local cabling
in order to keep them tightly synchronized. If no external reference clock is available, at
least accurate and consistent timestamping between the connected DAG cards is provided.
This approach is often used when two links in opposing directions are measured with two
separate measurement hosts, since it allows merging of the traces into one bidirectional
trace. In this case, synchronization between the two clocks is of main importance, and
accuracy with respect to true time (UTC) is no major concern.

6.4.4.2 Retrospective time correction

In some cases (e.g., for large geographical distances), traffic traces timestamped by different
clocks need to be compared. Even if clock synchronization by NTP or GPS is provided, forms
of clock skew, drift and jumps cannot be ruled out [58]. To compensate for these errors, retro-
spective time correction algorithms have been proposed. These algorithms have been designed
to remove clock offset and skew from one-way delay (OWD) measurements. For distributed
passive traffic measurements a set of passive OWD measurements can be obtained given that
sufficient (uniquely identifiable) packets traverse both measurement locations. In this case, the
correction algorithms can be applied on passive packet traces collected at different locations.

The observed OWD (OOWD) for the ith packet can be calculated as

OOWD(i) = tr(i)− ts(i) (1)

where tr and ts are the timestamps of the ith packet at receiver and sender respectively. Given
a relative clock offset δ between the receiver and sender clock, the actual OWD can then be
derived by:

OWD(i) = OOWD(i)− δ(i) (2)
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Early approaches assumed zero clock drift (i.e., constant clock skew) and no instantaneous clock
adjustments in order to estimated clock skew. This means that a series of OWD(i) measurements
would indicate a trend, following steady increasing or decreasing δ(i), depending on the sign of
the clock skew according to the reference clock (typically the receivers clock). Moon et al. [64]
proposed a linear programming based algorithm in order to estimate the slope α of the resulting
trend starting at an initial offset β, i.e., δ(1).

Newer approaches also try to take clock dynamics into account by partitioning the measure-
ments into segments representing periods with constant skew between clock jumps or frequency
adjustments. However, even these newer approaches assume zero drift between the two clocks.
Zhang et al. [65] proposed a set of algorithms based on the computation of convex hulls in
order to remove skews. A devide-and-conquer approach is used to identify clock resets (i.e.,
jumps) and a marching algorithm should identify epochs of frequency adjustments, between
which the relative clock skew is estimated and removed. However, Zhang’s approach has some
limitations, such as limitations of how often and frequent clock resets can occur.

Wang et al. [66] tried to generalize previous approaches by converting the clock dynamics
detection to a time series segmentation problem. The resulting clustering based OTDTS algo-
rithm (Optimized Top-Down Time series Segmentation) segments delay time series at the points
at which clock resets or adjustments occur. For each segment, clock skew can then be estimated
and removed either by the linear programming based algorithm as in Moon et al. or the convex
hull approach as proposed by Zhang et al.

A fuzzy-based approach for estimation and removal of clock skew and reset has been pro-
posed by Lin et al. [67], which is claimed to be more accurate and robust than Zhang’s convex-
hull approach. The authors combine the fuzzy clustering analysis [68] with the linear program-
ming based or the convex-hull approach, where the fuzzy analysis is used to distinguish between
clock resets and temporary delay variations such as traffic congestions.

Khlifi and Gregoire [69] tried to further reduce the complexity of previous skew estima-
tion approaches such as linear programming and convex-hull. Two techniques for offline skew
removal are proposed. The average technique, which reduces the complexity of previous algo-
rithms from O(N ) to O(1) by calculating the average of the delay differences between consecu-
tive packets. The direct skew removal technique remains at O(N ) complexity while increasing
the accuracy by iteratively evaluating the set of possible skews until an optimal value is reached.
Furthermore, two online techniques for skew removal are proposed, namely the sliding window

algorithm which tracks the skew by continual evaluation of variations in the minimum OOWD
and a combined algorithm, combining the sliding window and convex-hull approaches.

7 Data sharing

The discussions about all the legal, operational and technical difficulties involved in conducting
Internet measurement clearly show that proper network traces are the result of a laborious and
costly process. This explains why currently only few researchers and research groups have the
possibilities to collect Internet backbone data, which makes proper traces a scarce resource.
Therefore, the Internet measurement community has repeatedly been encouraged to share their
valuable datasets and make them publicly available [70, 54, 33], given that sharing of network
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data are legally permitted (see Section 3). Sharing network data are not only a service to the
community, but it is also an important factor related to credibility of research results. Generally,
sharing and archiving of data are fundamental to scientific progress and help to improve scope
and quality of future research.

Sharing network traces adds reliability to research, since it makes results reproducible by
the public, which allows verification and in the best case confirmation of earlier results. This
should be best practice in research, encouraging fruitful research dialogs and discussions within
the research community. Furthermore, releasing measurement data makes it possible to com-
pare competing methods on identical datasets, allowing fair and unbiased comparison of novel
methodologies. Publishing of network data also gives the additional benefit of providing the
original data owners with supplementary information about their data, yielding a better and
more complete understanding of the data. Finally, in order to get a representative view of the
Internet, diverse data at different locations and times needs to be collected and shared within
the research community. In a note on issues and etiquette concerning use of shared measure-
ment data [33], Allman and Paxson discuss the above-mentioned benefits of data availability,
including ethical and privacy considerations, as discussed here in Section 4.

Before data can actually be shared, researchers need to be made aware of existing and
available datasets. A system for sharing Internet measurements was proposed by Allmann in
2002 [71]. This system was inspiration for CAIDA to finally implement the Internet measure-
ment data catalog DatCat [72], which allows publication of meta-data about network datasets.
The goal of this project was to provide the research community with a central database, provid-
ing searchable descriptions of existing datasets.

Actual sharing of data, however, is problematic due to the mentioned uncertain legal situa-
tion and ethical considerations. Even if traces are desensitized by technological means (e.g., by
payload removal and anonymization), additional sharing policies are required in order to safe-
guard possible technological shortcomings such as trace de-anonymization (see Section 4.2.2).
Kenneally and claffy therefore try to facilitate protected data sharing by proactively implement-
ing management of privacy risks in the Privacy-Sensitive Sharing framework PS2 [17]. PS2 is
based on an hybrid model relying on a policy framework applying privacy principles together
with a technology framework implementing and enforcing privacy obligations. So far, the au-
thors have only outlined the PS2 framework without focusing on a particular implementation of
a data sharing tool.

An alternative approach to data sharing was suggested by Mogul in a presentation in 2002 [73].
He proposes a “move code to the data” solution, where analysis programs are sent to the data
owners (e.g., network operators) and executed on-site. In this scenario, only results would be
shared, but not the network data itself. This is an interesting approach, but it highly depends on
the will of the involved parties to cooperate.

As a solution to the privacy/utility tradeoff in data sharing, Mirkovic [74] proposed a privacy-
safe sharing framework based on secure queries. Instead of sharing (copies of) raw traces,
data access is re-directed through an online interface providing a query language, allowing cus-
tomized sets of queries to be run on the data and returning de-sensitized, aggregated information
fitting the specific research goals. Individual privacy policies can thus be enforced by the query
language interpreter.
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Parate and Miklau [75] very recently proposed a sharing framework in which trace owners
can match an anonymizing transformation of communication data with the requirements of
analysts. The framework should so enable formal reasoning about the impact of anonymization
operations on trace utility and privacy.

CASFI (Collect, Analyze, and Share for the Future Internet) is currently working on the
CASFI Data Sharing Platform [76], a framework that helps to share not only data, but also the
data management platform to facilitate better collaboration between multiple research groups.
The platform should help to manage local data, and at the same time provide an interface to
remote data, in order to get a consistent overview of relevant data without visiting different
web interfaces.

8 Experiences from the MonNet project

This section provides a description and lessons learned from a project for passive Internet traffic
monitoring and analysis conducted at Chalmers University of Technology: the MonNet project.
The goal of the project is to provide a better understanding of Internet traffic characteristics
based on empirical data, i.e., passive measurements on backbone links.

8.1 Legal and ethical approval

In summer 2004, MonNet, as a project regarding Internet and traffic measurements and analysis,
was proposed to the SUNET board. In order for the project to be granted, the SUNET board re-
quired permission from the “central Swedish committee for vetting ethics of research involving
humans” (Etikprövningsnämnden, EPN), which is among other things responsible for vetting
research that involves dealing with sensitive information about people or personal information.
Ethical vetting in this committee is carried out in six regional boards. After elaborate discus-
sions about the de-sensitization process of the traces, the regional ethics committee permitted
the MonNet measurements to take place. Traffic monitoring was granted under the conditions
that user payload is removed and IP addresses are anonymized, e.g., with prefix-preserving
Crypto-PAn. We consider the provided permission from the research ethics committee as an
appropriate safeguard, as requested for measurement of Internet traffic for scientific purposes
by current EU directives (see Section 3.1).

Lessons learned:

1. During the vetting process, it turned out that the committee had little understanding of the
technical background and implications. This resulted in a policy suggested by the Mon-
Net project itself which, after some amendments, was approved by the vetting committee.
Researchers therefore need to be aware of how and on which level of detail policies for
de-sensitization and sharing are formulated in order not to hinder sound scientific research
while still respecting privacy of individuals.

2. Obtaining legal approval can introduce a long and unpredictable time delay, which needs
to be considered in the project planning.
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8.2 Operational considerations

Operational considerations include choice of measurement location and access to the measure-
ment premises at the network operator:

8.2.1 Measurement location

Before actual measurements could be started, a measurement location needed to be chosen.
The MonNet project initially (from 2005 until 2007) recorded traffic on GigaSUNET Internet
backbone links. Data were collected on the outside point of an OC192 ring, which was the
primary link from the region of Gothenburg to the main Internet outside Sweden. The link
carried traffic from major universities, large student residential networks and a regional access
point exchanging traffic with local ISPs. This choice was in the first place made to achieve
traces with a high level of traffic aggregation, since the link measured carries data transferred
between a regional network and the main Internet.

The former ring architecture has during 2007 been upgraded to OptoSUNET, a star structure
over leased fiber. All SUNET customers are since then redundantly connected to a central
Internet access point in Stockholm. Besides some local exchange traffic, the traffic routed to
international commodity Internet is carried on two links (40 Gbit/s and 10 Gbit/s) between
SUNET and a Tier-1 provider. Since 40 Gbit/s measurement equipment was economically
impossible (it would essentially require measurement equipment for 4 x 10 Gbit/s links), the
measurement infrastructure was moved to the 10 Gbit/s link with the highest possible level of
traffic aggregation: the 10 Gbit/s link between SUNET and NorduNet, located in Stockholm.
According to SNMP statistics, this link carries 50% of all inbound but only 15% of the outbound
traffic volume.4 In July 2009 an additional 10 Gbit/s link was installed in parallel with the
existing one in order to keep up with the increasing traffic volumes.

8.2.2 Access to premises

The initial measurement location had the additional feature of being located in the same city
as the research group, at the Chalmers University of Technology in central Gothenburg. This
feature was of great advantage for very practical reasons:

• installation of optical splitters and operation of specialized measurement cards on 10 Gbit/s
speeds could not be tested beforehand in a lab environment, which required some adjust-
ments on site as reaction on early experiences.

• even tested commodity PCs used as measurement nodes required additional physical visits
at the measurement location due to unexpected early hardware defects such as harddisk
crashes and RAID controller problems, which are most common in early and very late
stages of hardware lifecycles (following the bathtub-curve).

Even if located in the same city, physical access to the actual measurement location, situated
in secure premises of an external network operator, was not entirely straight-forward to obtain
and involved inconvenient administrative overhead and idle times. Limited access possibilities

485% of the outbound traffic is routed via the 40 Gbit/s link.
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to operational network facilities and equipment is common for many network research projects
and should be taken into account when negotiating rules and policies with the network operator
enabling the measurements. To prevent some of the physical visits, it is useful to equip nodes
with remote management hardware capable of hardware resets and access to the system con-
sole. Unfortunately, the remote management cards recommended by the supplier of MonNet’s
measurement nodes turned out to be unstable and unreliable (i.e., useless), which highlights
the importance of using as much well-established and tested hardware as possible. As a conse-
quence, SSH access, which was granted only to specified hosts inside Chalmers University, was
the only way to remotely maintain and operate the measurement nodes.

Lessons learned:

1. Good contacts with the network’s operators and well defined access procedures alleviate
installation and configuration of measurement equipment.

2. Proven remote management possibilities should be exploited.

3. Measurement locations should in the first place be chosen in order to provide data support-
ing the specific research purpose. If possible, it is of advantage to choose geographically
close locations, which is especially true in early project phases.

4. Unforeseen delays by external parties (ethics committee, operators, hardware suppliers)
require sufficient slack times and parallel work, especially in early project phases.

5. In face of frequent changes to network topologies and technologies, measurement hard-
ware supporting various link-layer technologies (e.g., PoS HDLC and GbE) and wave-
lengths is preferable since it can be reused without additional costs.

8.3 Technical solution

The measurement nodes applied have been designed to meet the anticipated requirements of
packet-header measurements on PoS OC192 links. During the planning phase, related mea-
surement projects such as NLANR PMA’s OC48MON [77] and Sprint’s IPMON [56] provided
valuable inspiration. The described technical solution is based on state-of-the-art hardware
available during the design phase in 2004.

8.3.1 Traffic access

Optical splitters on two OC-192 links, one for each direction, are used to capture PoS HDLC
traffic. Since the signal strength was quite high, splitters with a 90/10 ratio turned out to be
sufficient for the sensitivity of the measurement cards, while not requiring any additional signal
amplifiers on the production links. Each optical splitter, tapping either the inbound or outbound
OC912 link, is attached to an Endace DAG6.2SE card sitting in one of the measurement nodes
via a PCI-X 133 MHz 64-bit PCI interface. The DAG cards have been configured with a buffer
reserved from the node’s main memory in order to deal with burst of high traffic load. For Linux
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Figure 1: Block diagram of measurement nodes

systems, the buffer size needs to lie between 128 MB and 890 MB. Endace recommends a buffer
size of at least 32MB for OC-12 links, thus we conservatively chose a large buffer of 512 MB for
OC-192 links, which did not result in any packet loss due to insufficient buffer space in any of
our measurements.5 DAG6.2SE cards can capture 10 Gbit/s on links with optical wavelengths
between 1300 and 1600 nm with STM-64c, 10GbE WAN and 10GbE LAN encapsulations.
Packets are timestamped with a resolution of 15 ns.

8.3.2 Collection hardware

The two measurement nodes are designed and configured identically. A schematic block dia-
gram of the relevant components is shown in Fig. 1. A measurement node consists of two AMD
Opteron 64-bit processors with 2 GHz clock frequency and a total of 2 GB of main memory, 1
GB per CPU as two interleaved 512 MB DDR-400 SDRAM DIMMs. The Tyan K8SR moth-
erboard is equipped with an AMD-8131 PCI-X Tunnel chipset connecting the processing units
with I/O devices on PCI-X slots. The DAG6.2SE card is the only device attached to the 133
MHz 64-bit PCI-X slot. On slot 2, supporting 100 MHz, six SCSI disks are connected to a
dual-channel Ultra-320 SCSI controller. The SCSI disks are configured to operate in RAID0
(striping), and thereby add up to about 411 GB of cumulated disk-space for preliminary stor-
age of collected network traces. The 6 Maxtor Atlas SCSI disks reach a sustained data rate of
between 40 and 72 MB/s, depending on the cylinder location. A series of tests with sequential
writes on the RAID0 system resulted in an average data rate of about 410 MB/s (3.3 Gbit/s).
Furthermore, a mirrored RAID-1 disk containing the operating system is connected to the IDE
controller (not visualized in Fig. 1).

As evident in Fig. 1, the bottleneck of this configuration is the storage system, with about 3.3
Gbit/s throughput. But also the nominal throughput of the SCSI interface (5.2 Gbit/s) and the
PCI-X buses (8.5 and 6.4 Gbit/s, respectively) are not sufficient to collect full packet traces in

5Dropped packets due to insufficient buffer space, PCI bus limitations or losses between the DAG card and the
memory are reported by DAG cards.
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full line speed on 10 Gbit/s networks. Also note that the buses above the PCI-X 8131 tunnel in
the figure are traversed twice during measurements (from the DAG Card into Memory, and then
back to the storage), which, however, does not pose a bottleneck in the present configuration.

8.3.3 Time synchronization

During measurements, the two DAG cards have been synchronized with each other using En-
dace’s DUCK Time Synchronization [59, 60] with no external reference time. Before and after
measurements, the DAG cards were synchronized to true time (UTC) using a pool of three stra-
tum 1 NTP servers. NTP synchronization was disabled during the measurements, since forms
of clocks skew, drift and jumps despite usage of NTP are problematic as described earlier.
DUCK, however, can provide an accurate and consistent timestamping between the connected
DAG cards ranging between ± 30ns according to Endace [60], even though their time might
not be accurate with respect to true time. The tight synchronization between the measurements
of opposing traffic directions allows simple merging of the unidirectional data into bidirec-
tional traces.

8.3.4 Processing and archiving platform

After data collection and a pre-processing procedures on the measurement nodes, the resulting
traces have been transferred via a Gigabit-Ethernet interface and a 2.5 Gbit/s Internet connection
to the storage and processing server located in a secured server room at Chalmers University.
The processing platform is attached to an external SCSI array box with a RAID5 configuration,
providing 2 TB of storage. 2 TB can store around 35 hours of compressed, bidirectional packet
header data collected on the current measurement location in OptoSUNET. Since this is not
sufficient for longitudinal measurement campaigns, an archiving solution was required. Due to
a tight economic situation, this was solved by acquisition of relatively cheap 1 TB SATA disks,
which have been temporary attached via USB. After archiving the data, the disks have been
placed offline in a safe when not in use. With the rapidly decreasing storage costs during recent
years, it was possible to install an additional 3 TB NAS (network array storage system) with
RAID5 configuration acting as online (though slow) archiving system.

Lessons learned:

1. Passive TAPs (optical splitters) in combination with specialized measurement cards is the
only way to ensure lossless and precise traffic measurement on high-speed links, which
is required in many research situations.

2. Since measurement cards are disproportionally expensive compared to commodity equip-
ment, it is worth it to invest in one measurement node per link (instead of multiple mea-
surement cards in one node) with high quality state-of-the-art hardware components.

3. Measurement nodes need to be designed carefully - performance of each component
needs to be considered in order to identify possible bottlenecks.
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4. Time synchronization by daisy chaining the DAG cards worked very well and was straight
forward, avoiding a lot of timing-related problems (such as need for retrospective time
corrections) when analyzing or merging the unidirectional traces.

5. Archiving of network traces should be considered from the beginning, since it inevitable
needs to be solved and thus needs to be part of the technical and economical planning.

8.4 Trace pre-processing

Pre-processing of traffic traces including reduction, de-sensitization and sanitization, is carried
out on the measurement nodes during and immediately after the collection.

8.4.1 Traffic reduction

The DAG cards have been configured to capture the first 120 bytes of each PoS frame to ensure
that all link-, network-, and transport-headers are preserved. The remaining payload fractions
have been removed later during the pre-processing of the traces. The average packet size on the
links lies around 700 bytes, which means a maximal throughput of around 1.8 million frames
per second on a 10 Gbit/s link. 44% of all frames are smaller than 120 bytes and thus not
truncated by the DAG card. As a result, the average size of packets that need to be stored on
disk after truncation is 88 bytes.This means that even at maximum link utilization of 10 Gbit/s,
only about 160 MByte/s need to be transferred to disk with this setup and packet distribution.
However, due to heavy over-provisioning of the links measured, in reality the nodes rarely
needed to store more than 35 MByte/s (280 Mbit/s) on disk during the MonNet measurement
campaigns. Occasional traffic spikes can of course reach much higher throughput values, but
these short spikes could successfully be buffered in the reserved main memory (512 MB).

8.4.2 Trace de-sensitization

After storing truncated packets on disks, the traces have been de-sensitized in offline fashion
on the measurement nodes, since online pre-processing in real time is unfeasible due to compu-
tational speed. De-sensitization has therefore been carried out by batch jobs immediately after
collection in order to minimize the storage time of unprocessed and privacy-sensitive traces.

As a first step in the de-sensitization process, the remaining payload beyond transport layer
was removed using CAIDA’s CoralReef [12] crl_to_dag utility. During this processing step,
CoralReef also anonymized IP addresses in the remaining headers using the prefix-preserving
Crypto-PAn [30]. A single, unique encryption-key was used throughout all MonNet measure-
ment campaigns in order to allow tracing of specific IP addresses during the whole time period
and for all measurements. This encryption key is kept secure and used for anonymization on
the measurement nodes only.

8.4.3 Trace sanitization

Trace sanitization refers to the process of checking and ensuring that the collected traces are free
from logical inconsistencies and are suitable for further analysis. This was done by using avail-
able tools such as the dagtools provided by Endace, accompanied by own tools for additional
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consistency checks. These checks have been applied before and after each de-sensitization
process. Resulting statistical figures such as byte and record numbers have been compared
between consecutive passes of the sanitization procedures. In the common cases, when no in-
consistencies or errors have been detected, the original, unprocessed traces have been deleted
upon completion of the pre-processing procedures, and only de-sensitized and sanitized ver-
sions of the traces have been kept. If major errors such as packet loss have been detected, the
pre-processing procedure has been stopped, the particular traces on both measurement nodes
(for both directions) have been deleted and an immediate new collection has been scheduled
automatically on both nodes. Detection of minor errors, such as single checksum inconsisten-
cies, has been documented in the meta-data. For errors of unknown severity further steps have
been postponed, requesting manual inspection. The sanitization included the following checks:

Major errors (discarding of traces)

• Are timestamps strictly monotonically increasing?
• Are timestamps in a reasonable time window?
• Are consecutive timestamps yielding feasible inter-arrival times according to line-speed

and packet sizes?
• Are frames received continuously? (Packet arrival rates of zero packets/s should not hap-

pen on productive backbone links.)
• Are there any occurrences of identical IP headers within consecutive frames?
• Are all recorded frames of known type (i.e., POS with HDLC framing)?
• Is there an unreasonably high number of non-IP (v4 and v6) packets (which indicates

garbled data)?
• Has the DAG reported loss of records during transfer to main memory (I/O bus limits)?
• Has the DAG reported packet loss or truncation due to insufficient buffer space?
• Are record counts before and after de-sensitization matching (i.e. have any packets been

discarded)?

Minor errors (report in meta-data)

• Are there any IP header checksum errors?
• Have there been any receiver errors (i.e., link errors, such as incorrect light levels on the

fiber and HDLC FCS (CRC) errors)?

Errors with unknown severity (manual inspection)

• Did the system log show any error messages during the measurements (e.g., by the mea-
surement card or storage system)?

• Have there been any other internal errors reported in-line by the DAG card?

The sanitization process revealed some traces that had to be discarded due to garbled data or
packet arrival rates of zero after a certain time, particularly on one measurement node. We
suspect that this particular DAG card sometimes looses framing due to a hardware failure. Fur-
thermore, infrequently the DAG cards discard single frames due to receiver errors, typically
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HDLC CRC errors. Some frames can be reported as corrupted by the sanitization process due
to IP checksum errors. Since the HDLC CRC was shown to be correct, there are cases when the
IP checksum and CRC disagree [78]. Another explanation could be checksum errors already
introduced by the sender, coupled with routers on the path ignoring the IP checksum in their
validation of incoming IP packets and only performing incremental updates [79]. Since such
missing or corrupted packets occur very rarely, the traces have still been used for analysis, but
missing packets and IP checksum errors have been documented in the attached meta-data file.

Lessons learned:

1. Over-provisioning and packet truncation (as often required for privacy reasons anyhow)
reduce hardware requirements and alleviate possible bottlenecks.

2. Thorough trace sanitization after collection and de-sensitization is important in order to
avoid waste of computational resources and storage space. Furthermore it is imperative
to ensure sound and unbiased scientific results during traffic analysis.

3. Collection circumstances (hardware, software, link, time) and pre-processing steps should
be documented in meta-data and attached to the traces throughout the trace lifetime (from
collection to archiving of the data).

4. Even if traffic data is sanitized, syntactical problems with individual packets need to be
anticipated. This means that pre-processing and analysis tools need to be robustly de-
signed in order to be able to handle all sorts of unknown protocols and packet header
anomalies [27].

8.5 Data sharing policy

During the start-up phase, when the MonNet project was planned, vetted and later granted, we
missed to establish a clear data sharing policy. After collecting the first traces and publishing
results in scientific conferences and journals, other researchers identified our project as a possi-
ble resource of recent Internet data and asked for access to MonNet traffic traces. In absence of
policies agreed upon by the network provider and the vetting committee, a “move code to data”
approach was chosen, in which MonNet project members act as proxy (one level of indirection)
between external researchers and the traffic traces.

Lessons learned: Data sharing is an essential part of scientific work, which needs to be
explicitly considered already in early project phases. A technological and policy framework
that might help future projects to implement secure data sharing is currently being suggested by
Kenneally and claffy [17].

8.6 Traffic analysis and scientific results

So far, only the measurement processes including data pre-processing have been discussed. In
this Section, the analysis approaches used to extract scientific results are outlined briefly in
order to indicate the applicability and value of Internet measurements [80].
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Packet-level analysis: In one of our early studies [81], Internet backbone traffic has been
analyzed in order to extract cumulated statistical data into a database. The main challenge in
this analysis program was to provide sufficient robustness, i.e., being able to deal with any
possible kind of header inconsistency and anomaly. The resulting database consists of tables
for specifically interesting features, such as IP header length, IP packet length, TCP options and
different kinds of anomalous behavior, which could be analyzed conveniently with the help of
SQL queries. A later follow up study [27] provided a more systematic listing of packet header
anomalies in order to discuss potential security problems within Internet packet headers.

Flow-level analysis: In order to be able to conduct a detailed connection level analysis,
the tightly synchronized unidirectional traces have been merged according to their timestamps.
In the resulting bidirectional traces directional information for each frame was preserved in a
special bit of the ERF trace format. As a next step, an analysis program collected per-flow
information of the packet-level traces. Packet streams have then been summarized in flows
by using a hash-table structure in memory. The gathered per-flow information includes packet
and data counts for both directions, start- and end times, TCP flags and counters for erroneous
packet headers and multiple occurrences of special flags like RST or FIN. This information was
inserted into one database table for each transport protocol, each row representing a summary
of exactly one flow or connection. The resulting flow database was used to study directional
differences [9], increasing portions of UDP traffic [82] and routing symmetry [83] in Internet
backbone traffic.

Traffic classification: To get a better understanding of traffic composition, different traffic
classification methods have been studied [84]. A first approach to classify traffic on application
level was done based on a set of heuristics regarding connection patterns of individual endpoints
in the Internet [10]. The resulting classified flow table then allowed us to analyze and compare
flow and connection characteristics among traffic of different network applications [11]. Re-
cently, a classification approach based on statistical protocol properties has been suggested [85]
and is currently further investigated and evaluated.

Lessons learned: Analysis of packet pevel-data often produces extensive result-sets, even
if processed and aggregated. While many researchers and available analysis tools handle and
process results-sets on file-level, our experience shows that it is advisable to exploit database
systems (e.g., MySQL), since databases are designed to handle large data amounts and facilitate
data-mining.

9 Summary and conclusions

The development of the Internet has without doubt not yet come to an end. In the next years,
we can expect a continuing growth in user numbers and traffic volumes. Traffic will exhibit an
even higher diversity, with the Internet becoming an even more unified backbone for all forms
of communication and content (e.g., VoIP, IPTV). As a consequence, network bandwidths will
continue to increase with at least the same pace as computer processing and storage capacities.
However, the ability to keep up with link speeds will not be the only challenge for Internet mea-
surement. There are a number of technical and commercial applications which could directly
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benefit from results of Internet measurement and analysis, including network design and pro-
visioning, improvement of network protocols and infrastructure but also network performance
and accounting. Analysis of actual Internet traffic is also crucial input for network modeling
and further development of network services. The Internet community will therefore have an
increasing need for methods and means to collect, analyze, interpret and model Internet traffic.

The success and popularity of the Internet has unfortunately also lead to a rapid increase in
all forms of misuse and unsocial, malicious activities - a trend, which is very likely to exacer-
bate as the importance of the Internet continues to grow. Network security measures, such as
intrusion detection and prevention, are depending on profound understanding of traffic proper-
ties and have to rely on fast and reliable analysis methods of network anomalies and detection
of vulnerabilities. Therefore research on modern, real-life datasets is vital for network security
research in order to remain proactive.

Research on technologies and methods to monitor and measure Internet traffic are also of in-
creasing legal relevance. With the data retention directive of the European Union [15], providers
in member states will soon be required to retain connection data for periods of up to two years.
While this directive could be postponed until March 2009, governments and operators currently
need to establish the possibilities to execute the directive. This type of regulation obviously
requires adequate technical solutions and know-how - which can both be provided by past, but
also upcoming achievements of the Internet measurement and analysis community.

Analysis of Internet traffic is for obvious reasons heavily depending on the quality of ex-
isting network traces. It is therefore crucial to provide continuous possibilities to monitor and
measure Internet traffic on as many sites as possible while at the same time maintaining re-
spect for moral and ethical constraints. Acquiring network traces on backbone links, however,
is a non-trivial task. Our experience shows that many problems can be avoided by careful and
anticipatory planning. To facilitate the setting-up of future measurement projects, this paper
is intended to serve as a guide for practical issues of Internet measurement based on lessons
learned during the MonNet project. The paper addresses the main challenges of passive, large-
scale measurements, including legal, ethical, technical and operational aspects. Furthermore,
a detailed overview of the research field is given by describing different design choices and
state-of-the-art solutions. This paper should provide researchers and practitioners with useful
guidelines to setting up future monitoring infrastructures - which will in turn help to improve
results from traffic analysis and therefore contribute to a better and more detailed understanding
of how the Internet functions.
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Abstract

The dominating Internet protocols, IP and TCP, allow some flexibility in implemen-

tation, including a variety of optional features. To support research and further develop-

ment of these protocols, it is crucial to know about current deployment of protocol specific

features and accompanying anomalies. This work is intended to reflect the current char-

acteristics of Internet backbone traffic and point out misbehaviors and potential problems.

On 20 consecutive days in April 2006 bidirectional traffic was collected on an OC-192

backbone link. The analysis of the data provides a comprehensive summary about current

protocol usage including comparisons to prior studies. Furthermore, header misbehaviors

and anomalies were found within almost every aspect analyzed and are discussed in detail.

These observations are important information for designers of network protocols, network

application and network attack detection systems.

1 Introduction

Today, the Internet has emerged as the key component for commercial and personal commu-

nication. One contributing factor to the still ongoing expansion of the Internet is its versatility

and flexibility. Applications and protocols keep changing not only with time [1], but also within

geographical locations. Unfortunately, this fast development has left little time or resources to

integrate measurement and analysis possibilities into the Internet infrastructure. However, the

Internet community needs to understand the nature of Internet traffic in order to support re-

search and further development [2]. It is also important to know about current deployment of

protocol specific features and possible misuse. This knowledge is especially relevant in order to

improve the robustness of protocol implementations and network applications, since increasing

bandwidth and growing numbers of Internet users also lead to increased misuse and anoma-

lous behavior [3]. One way of acquiring better understanding is to measure and analyze real

Internet traffic, preferably on highly aggregated links. The resulting comprehensive view is

crucial for a better understanding of the applied technology and protocols and hence for the fu-

ture development thereof. This is important for establishing simulation models [4] and will also

bring up new insights for related research fields, such as network security or intrusion detection.
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A number of studies on protocol specific features have been published earlier, based on a

variety of datasets. Thompson et al. [5] presented wide-area Internet traffic characteristics on

data recorded on OC-3 traffic monitors in 1997, including figures about packet size distribution

and transport protocol decomposition. McCreary et al. [1] provided a longitudinal analysis of

Internet traffic based on data collected on an OC3 link of the Ames Internet exchange in 1999

to 2000. Fractions of fragmented traffic were presented and the usage of Path MTU Discovery

was inferred based on the packet size distribution. Shannon et al. [6] studied frequency and

cause of IP fragmented traffic on data collected on different WANs (100Mbit Ethernet, OC3

and OC12) in March 2001. Fraleigh et al. [7] analyzed traffic measurements from the Sprint

IP backbone, based on a number of traces taken on different OC12 and OC48 links in 2001-

2002. Pentikousis et al. [8] indirectly quantified deployment of TCP options based on traces

with incomplete header information. The data was collected between October 2003 and January

2004 on a number of OC3 and OC12 links by the NLANR/PMA. In that paper, recent figures

about packet size distributions were presented as well. Already earlier, Allman [9] presented

observations about usage of TCP options within traffic from a particular webserver in a one and

a half year period from 1998-2000. Finally, in his investigations about the evolution of transport

protocols, Medina et al. [10] presented usage of TCP features like ECN (RFC 3168) based on

passive measurements on a local webserver during two weeks in February 2004.

Despite these existing studies, there is a need for further measurement studies [2, 11]. Con-

tinued analysis work needs to be done on updated real-world data in order to be able to follow

trends and changes in network characteristics. Therefore, in this work we will consequently

continue to analyze IP and TCP, as they are the most common protocols used in today’s In-

ternet, and compare the results to previous work. After describtion of the analyzed data in

Section 2, we present our results for IP and TCP specific features in Section 3. Finally, Section

4 summarizes the main findings and draws conclusions.

2 Methodology

2.1 Collection of Traces

The traffic traces have been collected on the outermost part of an SDH ring running Packet over

SONET (PoS). The traffic passing the ring to (outgoing) and from (incoming) the Internet is

primarily routed via our tapped links. This expected behavior is confirmed by SNMP statistics

showing a difference of almost an order of magnitude between the tapped link and the protec-

tion link. Simplified, we regard the measurements to be taken on links between the region of

Göteborg, including exchange traffic with the regional access point, and the rest of the Internet.

On the two OC-192 links (two directions) we use optical splitters attached to two Endace

DAG6.2SE cards. The DAG cards captured the first 120 bytes of each frame to ensure that

the entire network and transport header information is preserved. The data collection was per-

formed between the 7th of April 2006, 2AM and the 26th of April 2006, 10AM. During this

period, we simultaneously for both directions collected four traces of 20 minutes each day at

identical times. The times (2AM, 10AM, 2PM, 8PM) were chosen to cover business, non-

business and nighttime hours. Due to measurement errors in one direction at four occasions we

have excluded these traces and the corresponding traces in the opposite direction.

110 PAPER II



2.2 Processing and Analysis

After storing the data on disk, the payload beyond transport layer was removed and the traces

were sanitized and desensitized. This was mainly done by using available tools like Endace’s

dagtools and CAIDA’s CoralReef, accompanied by own tools for additional consistency checks,

which have been applied after each preprocessing step to ensure sanity of the traces. Trace

sanitization refers to the process of checking and ensuring that the collected traces are free from

logical inconsistencies and are suitable for further analysis. During our capturing sessions, the

DAG cards discarded a total of 20 frames within 12 different traces due to receiver errors or

HDLC CRC errors. Another 71 frames within 30 different traces had to be discarded after the

sanitization process due to IP checksum errors.

By desensitization the removing of all sensitive information to ensure privacy and confiden-

tiality is meant. The payload of the packets was removed earlier, so we finally anonymized IP

addresses using the prefix preserving CryptoPAN [12]. After desensitization, the traces were

moved to a central storage. An analysis program was run on the data to extract cummulated

statistical data into a database. For packets of special interest, corresponding TCP flows have

been extracted.

3 Results

The 148 traces analyzed sum up to 10.77 billion PoS frames, containing a total of 7.6 TB of

data. 99.97% of the frames contain IPv4 packets, summing up to 99.99% of the carried data.

The remaining traffic consists of different routing protocols (BGP, CLNP, CDP). The results in

the remainder of this paper are based on IPv4 traffic only.

3.1 General Traffic Properties

3.1.1 IP packet size distribution

In earlier measurements, cumulative distribution of IPv4 packet lengths was reported to be tri-

modal, showing major modes at small packet sizes just above 40 bytes (TCP acknowledgments),

large packets around 1500 bytes (Ethernet MTU) and default datagram sizes of 576 bytes ac-

cording to RFC 879. Data collected between 1997 and 2002 reported about fractions of default

datagram sizes from 10% up to 40% [5, 1, 6, 7]. Pentikousis et al. [8] however showed in 2004,

that packet size distribution was no longer trimodal, but rather bimodal, with default datagram

sizes accounting for only 3.8% of all packets.

Fig. 1 illustrates the cumulative distribution of IPv4 packet lengths in our traces of 2006.

The distribution is still bimodal, with the major portion of lengths between 40 and 100 bytes

and between 1400 and 1500 bytes (44% and 37% of all IPv4 packets, resp.). The usage of

the default datagram size of 576 byte was further decreased to a fraction of only 0.95%, now

not even being among the first three most significant modes anymore. This is caused by the

predominance of Path MTU Discovery in today’s TCP implementations, which is confirmed

later by the analysis of the IP flags and the TCP maximum segment size (MSS) option. On the

other hand, two other notable modes appeared at 628 bytes and 1300 bytes, representing 1.76%

and 1.1% of the IPv4 traffic, resp.
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Figure 1: Cum. IPv4 Packet Size Distribution

An analysis of TCP flows including a lot of 628 byte packets showed that these packets typ-

ically appear after full sized packets (MSS of 1460), often with the PUSH flag set. We suspect

that they are sent by applications doing ’TCP layer fragmentation’ on 2KB blocks of data, in-

dicating the end of data a data block by PUSH. This is confirmed by flows where smaller MSS

values have been negotiated (e.g. 1452). In this cases, the following packets became larger (e.g.

636 bytes) to add up to 2048 bytes of payload again. Examples for applications using such 2KB

blocks for data transfer can be found in [13], where different file-sharing protocols using fixed

block sizes are presented. A look at the TCP destination ports revealed that large fractions of

this traffic are indeed sent to ports known to be used for popular file-sharing protocols like Bit-

torrent and DirectConnect. The notable step at 1300 bytes on the other hand could be explained

by the recommended IP MTU for IPsec VPN tunnels [14].

Packets larger than 1500 bytes (Ethernet MTU) aggregate a fraction of 0.15%. Traffic of

packets sized up to 8192 bytes was observed, but the major part (99.7%) accounts for packet

sizes of 4470 bytes. A minor part of the >1500 byte sized packets represents BGP updates be-

tween backbone- or access routers. The majority of the large packet traffic (mainly 4470) could

after thorough investigation be identified as customized data-transfer from a space observatory

to a data center using jumbo-packets over Ethernet.

3.1.2 Transport protocols

The protocol breakdown in Table 1(a) once more confirms the dominance of TCP traffic. Com-

pared to earlier measurements reporting about TCP accounting for around 90 - 95% of the data

volume and for around 85-90% of IP packets, [5, 1, 6, 7], both fractions seem to be slightly

larger in the analyzed SUNET data. In Table 1(a), the fractions of cumulated packets and bytes

carried in the respective protocol are given in percent of the total IPv4 traffic for the correspond-

ing time.

An interesting observation can be made at the 2PM data. Here, the largest fraction of TCP

and the lowest of UDP packets appear. A closer look at the differences between outgoing and

incoming traffic revealed that three consecutive measurements on the outgoing link carried up to
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(a) IPv4 Protocol Breakdown (values in %)

2AM 10AM 2PM 8PM

Pkts Data Pkts Data Pkts Data Pkts Data

TCP 91.3 97.6 91.5 96.8 93.2 97.1 91.4 97.2

UDP 8.5 2.3 7.6 2.8 6.1 2.7 8.3 2.7

ICMP 0.2 0.02 0.19 0.02 0.20 0.02 0.12 0.01

ESP 0.01 0.00 0.47 0.19 0.35 0.14 0.02 0.02

GRE 0.01 0.01 0.08 0.08 0.04 0.03 0.06 0.04

(b) UDP Burst (values in %)

OUTGOING UDP

Date Time Packets Data

2006-04-16 2PM 6.8 1.7

2006-04-16 8PM 40.6 5.1

2006-04-17 2AM 51.9 6.1

2006-04-17 10AM 58.1 7.1

2006-04-17 2PM 5.7 1.8

Table 1: Transport Protocols

58% UDP packets, not covering the 2PM traces, as shown in Table 1(b). These figures indicate

a potential UDP burst of 14-24 hours of time. A detailed analysis showed that the packet length

for the UDP packets causing the burst was just 29 bytes, leaving a single byte for UDP payload

data. These packets were transmitted between a single sender and receiver address with varying

port numbers. After reporting this network anomaly, the network support group of a University

confirmed that the burst stemed from an UDP DoS script installed undetected on a webserver

with a known vulnerability. Although TCP data was still predominant, a dominance of UDP

packets over such a timespan could potentially lead to TCP starvation and raise serious concerns

about Internet stability and fairness.

3.2 Analysis of IP Properties

3.2.1 IP type of service

The TOS field can optionally include codepoints for Explicit Congestion Notification (ECN)

and Differentiated Services. 83.1% of the observed IPv4 packets store a value of zero in the

TOS field, not applying the mechanisms above. Valid ’Pool 1’ DiffServ Codepoints (RFC 2474)

account for 16.8% of all TOS fields.

Medina et al. [10] reported about almost an doubling of ECN capable webservers from 1.1%

in 2000 to 2.1% in 2004, but indicates that routers or middleboxes might erase ECT codepoints.

In our data only 1.0 million IPv4 packets provide ECN capable transport (either one of the ECT

bits set) and additionally 1.1 million packets actually show ’congestion experienced’ (both bits

set). This means that ECN is implemented in only around 0.02% of the IPv4 traffic. These

numbers are consistent with the observations by Pentikousis et al. [8], suggesting that the

number of ECN-aware routers is still very small.
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3.2.2 IP Options

The analysis of IP options showed that they are virtually not used. Only 68 packets carrying

IP options were observed. One 20-minute trace contained 45 packets with IP option 7 (Record

Route) and 3 traces carried up to 12 packets with IP option 148 (Router Alert).

3.2.3 IP fragmentation

During the year 2000, McCreary et al. [1] observed an increase in the fraction IP packets

carrying fragmented traffic from 0.03% to 0.15%. Indeed, one year later, Shannon et al. [6]

reported fractions of fragmented traffic of up to 0.67%. Contrary to this trend, we found a much

smaller fraction of 0.06% of fragmented traffic in the analyzed data. Even though these numbers

are relatively small, there is still an order of magnitude difference between earlier and current

results. 72% of the fragmented traffic in our data is transmitted during office hours, at 10AM

and 2PM. We also observed that the amount of fragmented traffic on the incoming link is about

9 times higher than on the outgoing one.

While UDP and TCP are responsible for 97% and 3% respectively of all incoming frag-

mented segments, they just represent 19% and 18% of the outgoing. The remaining 63% of the

outgoing fragmented traffic turned out to be IPsec ESP traffic (RFC 4303), observed between

exactly one source and one receiver during working hours on weekdays. Each fragment series in

this connection consists of one full length Ethernet MTU and one additional 72 byte fragment.

This can easily be explained by an unsuitably configured host/VPN combination transmitting

1532 bytes (1572 - 40 bytes IP and TCP header) instead of the Ethernet MTU due to the ad-

ditional ESP header. The dominance of UDP among fragmented traffic is not surprising, since

Path MTU Discovery is a TCP feature only.

The first packets in all observed fragment series are in 96.7% sized larger or equal than

1300 bytes. This goes along with the assumption that fragments are sent in-order and the first

segments should be full sized MTUs. It should be noted that 1.6% of first packets in fragment

series are smaller than 576 bytes. This is not surprising, considering an earlier observation

by Shannon et al. [6] that about 8% of fragment series are sent in reverse-order, sending the

smallest segment first. This is accepted behavior, since the IP specification (RFC 791) does not

prescribe any sizes of fragments. Another reason for small first segments are misconfigured

networks or deliberate use of small MTUs, like serial links (RFC 1144) connected to the back-

bone. An example for such unusual small sized fragments of only 244 bytes will be given in

the next subsection.

3.2.4 IP flags

The analysis of the IP flags (fragment bits) revealed that 91.3% of all observed IP packets have

the don’t fragment bit (DF) set, as proposed by Path MTU Discovery (RFC 1191). 8.65% use

neither DF nor MF (more fragments) and 0.04% set solely the MF bit.

Following the IP specification (RFC 791) no other values are valid in the IP flag field.

Nevertheless, we observed a total of 27,474 IPv4 packets from 70 distinct IP sources with DF
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and MF set simultaneously. About 35 of those invalid bit values are evenly observed among both

directions in all traces, with exception of one burst of 21,768 packets in a trace of the incoming

link. This burst stems from a 10 minutes long TCP flow between a local server on port 49999

and a remote client on the gaming port 1737 (UltimaD). Surprisingly, all the incoming traffic is

fragmented to series of 244 byte long IP packets. The data carried by these fragment series adds

up to full Ethernet MTUs size. Because being fragmented, each but the last fragment in a series

has the MF bit set. Disregarding its actual fragmentation, each fragment also has the DF bit set.

A similar behavior could be observed on the outgoing link, where one source generates 85%

of all outgoing DF+MF packets, evenly distributed over 70 out of 76 measured times. Again,

each IP packet has the DF bit set by default, while MF is set additionally when fragmentation is

needed. Looking at the traffic pattern and considering that UDP port 53 is used, it seems to be

obvious that there is a DNS server using improper protocol stacks inside the Göteborg region.

Additionally, we observed a total of 233 cases of a reserved bit with value 1, appearing in

small numbers in most of the collected traces and stemming from 126 distinct sources. Ac-

cording to the IP standard (RFC 791) the reserved bit must be zero, so this behavior has to be

regarded as misbehavior.

3.3 Analysis of TCP Properties

3.3.1 TCP Options

In an early study, Allman [9] reported about portions of hosts applying the Window Scale (WS)

and Timestamp (TS) options, both increasing from about 15% to 20% during a 15 month period

from 1998 to 2000. The SACK permitted option was shown to increase even further from 7%

to 40%. No numbers for hosts applying the MMS option were given. The more recent approach

to quantify TCP option deployment by Pentikousis et al. in 2004 [8] was unfortunately carried

out on traces with incomplete header information. Since TCP option data was not available in

these traces, their deployment had consequently to be analyzed indirectly. Our results, based

on traces including complete header information, show that this indirect approach yielded quite

accurate results.

Table 2(a) shows the deployment of the most important TCP options as fractions of the

SYN and SYN/ACK segments, divided into summaries of the four times each day. The results

show that MSS and SACK permitted options are widely used during connection establishment

(on average 99.2% and 89.9% resp.). The positive trend of the SACK option deployment, as

indicated by Allman, was obviously continued and the inferred values of Pentikousis et al. are

finally confirmed. The frequent usage of the MSS option again indicates the dominance of

Path MTU Discovery in TCP connections, since an advertised MSS is the precondition for this

technique. The WS and TS options on the other hand are still applied to the same extent as in

2000 (17.9% and 14.5% resp.). In Table 2(b) the occurrence of TCP options with respect to

all TCP segments is summarized. Around 87% of the TCP segments do not carry any options

at all. Only an average of 2.9% of all segments actually applies the SACK opportunity, which

was permitted by around 90% of all connections. It is interesting, that although 15.5% of the

connection establishments advertise usage of the TS option, it just reappears in 9.3% of all
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(a) TCP Options in SYN segments

Kind 2AM 10AM 2PM 8PM

2(MSS) 99.0% 98.7% 99.7% 99.1%

3(WS) 21.4% 18.4% 16.6% 16.5%

4(SACK perm.) 91.0% 86.6% 88.9% 89.8%

8(TS) 18.2% 15.3% 13.3% 12.8%

(b) TCP Options in all segments

Kind 2AM 10AM 2PM 8PM

No Opt. 86.5% 85.2% 87.3% 88.6%

5(SACK) 3.1% 2.8% 2.9% 3.1%

8(TS) 9.7% 11.2% 9.0% 7.6%

19(MD5) 0.02% 0.02% 0.01% 0.01%

Table 2: TCP Option Deployment

segments. This might be caused by TCP servers not responding with the TS option set in their

initial SYN/ACK. All other option kinds were observed with very low frequency.

3.3.2 TCP option values

Allman [9] reported about 90% of connections advertising an MSS of about 1460 bytes in the

SYN segment, leaving 6% for larger MSS values, and another 5% for MSS values of about

500 bytes. An analysis of advertised values within the MSS option field in our data revealed

that the major portion (93.7%) of the MSS values still lies between 1400-1460 bytes, thus close

to the Ethernet maximum (1500-40 byte for IP and TCP headers). Values larger than 1460

bytes are carried by only 0.06% of the MSS options, with values up to the maximum of 65535.

Values smaller than 536 bytes (the default IP datagram size minus 40) are carried by another

tiny fraction (0.05%), including MSS values down to zero. The 53,280 packets carrying small

MSS values are send by 2931 different IP addresses. The major fraction of the <536 MSS

values carries a value of 512 (87.5%), followed by 64 (2.4%) and 260 (1.3%). Values down to

265 bytes can be explained by standard active fingerprinting attacks, like nmap [15], whereas

smaller values are more likely to be DoS exploits.

In Allman’s data from 2000, Window Scale (WS) factors as high as 12 appeared, with

zero as the main factor, accounting for 84%, followed by a factor of one with about 15%. In

our contemporary data, WS factor values appear in the range of 0 to 14. The most common

scale factor with 58% is zero, which should not be interpreted as real factor, but as an offer

to scale while scaling the own receive window by 1. The major real scale factor appears to

be 2, with 30.8% deployment. Other scale factors in recognizable fractions are 3, 1, and 6,

applied in respectively 4.2%, 4.1% and 1.0% of all segments carrying a WS option. As a

general observation, the WS option is applied much more effective now, most probably due to

bandwidth increases and larger data transfers. A detailed look at diurnal behavior of WS option

values revealed that traces at nighttime (2AM) carry constantly about 10% more scale factor

values of 2, compensated by around 10% less factors of zero.
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3.3.3 TCP option misbehavior

Connected to the analysis of TCP options, a couple of anomalies were encountered (Table 3(a)).

The table shows only counts of packets, since the relative fractions are too small compared to the

amount of total TCP segments. It should be mentioned that the differences between outgoing

and incoming traffic lie typically in the order of a magnitude. Also diurnal differences can

be observed, with non-working hours (2AM and 8PM) responsible for 67% of all reported

anomalies.

(a) TCP options and header lengths

Anomaly 2AM 10AM 2PM 8PM

Undef.Kind 1062 507 413 388

Invalid OL 1200 399 915 3020

Invalid HL 71 528 130 119

(b) TCP flags

Anomaly 2AM 10AM 2PM 8PM

RST+SYN+FIN 8 35 11 15

RST+SYN 25 70 43 27

SYN+FIN 4 22 8 9

Zero Flags 32 78 86 90

RST+FIN 10200 10988 14320 16334

Table 3: Anomalies in TCP Headers

The first misbehavior experienced was the occurrence of undefined option types. Out of the

8bit range for TCP option kinds, only 26 are defined. From the remaining types almost all

(228) have been observed. 522 distinct sources sent the 2370 undefined options observed, with

85% appearing on the incoming link. One single source sent 42% of these packets during the

20 minutes duration of one measurement at 2AM. Usage of a single destination port and 8200

different destination hosts within a one network prefix clearly indicate a scanning attack, even

though only a minor fraction (6%) of the scanning traffic actually showed undefined options.

The malformed packets carried instead of {MSS, NOP, NOP, SACK perm.} the option sequence

of {MSS, random byte, random byte, 0, 0}. It seems likely that it is indeed the scanning software

which is buggy and generates occasional malformed packets.

Another inconsistency encountered are option headers appearing to be valid while carrying

option lengths that do not correspond to the total header length in the regular TCP header. 98.2%

of the 5534 cases happened on the incoming link, with two sources responsible for 45% and

22% of such anomalous headers. The first source adds a SACK option with constant pattern to

the TCP header, declaring an option header length of 180 bytes. This source was observed at 4

different days. The second source applies valid TCP options including an MSS value of 1460

during connection setup in SYN/ACK packets. However, also in the proceeding data packets

an option of type 2 (MSS) appears, but this time followed by zeros, and thereby consequently

advertising an option length of zero. According to the traffic pattern this source was a webserver.

In total, 259 unique sources of this anomaly have been identified.
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Finally, 848 TCP segments advertising header length values of less than 20 bytes were

generated by 184 distinct sources, probably being DOS exploits. Again, the major fraction

(91.3%) was observed in incoming traffic. 81.5% of the invalid values advertised a TCP header

of zero length. The remaining 18.5% are evenly distributed between the remaining possible

length values (in multiples of 4). The main source of zero byte TCP headers sends 351 such

packets during a period of at at least 20 minutes. 351 unique destinations for 351 packets

indicate a scanning campaign, this time to some well-known source port numbers (21, 23, 110,

80, 8080).

3.3.4 TCP Flags

Analyzing the TCP flag field, 10,972 ECN-setup SYN packets and just 800 ECN-setup SYN/ACK

segments (RFC 3168) have been observed. The small numbers are consistent with earlier obser-

vations by Medina et al. [10], where only 0.2% of tested web clients advertise ECN capabilities.

In section 3.2.1 we identified around 2.1 million ECN capable IP packets. This indicates that

the few ECN enabled TCP connections represent large flows.

The urgent flag (URG) was set in only 663 segments. The acknowledgment flag (ACK) on

the other hand was set in 98.6% of all segments, which is expected, since theoretically only the

initial SYN packets should not carry an ACK flag. The push bit (PSH) was enabled in 22.4%

of all segments.

In Table 3(b) we present packet counts for unexpected combinations of connection flags.

The four first-listed anomalies have been seen in packets sent by 56 distinct sources. Such

inconsistencies can easily be generated by port scanning tools like nmap [15]. We can rule out

T/TCP as reason for SYN+FIN packets, since none of the 43 packets carried CC options (RFC

1644). The most frequent anomaly is connection termination with both, FIN and RST flags set.

This was seen in 51,842 segments, send by 7576 unique source IP addresses. All connection

flag anomalies are spread quite evenly over all measurements, with no particular sources to

stand out.

4 Summary and Conclusions

In order to be able to present contemporary characteristics of Internet traffic, 148 traces of 20

minutes duration have been collected on a pair of backbone links in April 2006. The analysis

revealed that IP options are virtually not applied and IP fragmentation is done to a minor ex-

tent (0.06%), with UDP accounting for most IP fragments. The latter observation stems from

an increased employment of TCP Path MTU Discovery, which was shown to be even more

dominating than reported earlier. Regarding packet size distribution, two findings should be

noted. First, IP packet lengths of 628 bytes have become even more common than the default

datagram size, with P2P traffic identified as likely source. Second, except for router traffic,

jumbo packets are used for a single custom application only and are not seen otherwise. Even

though these observations are limited to our measurements from a single point in the Internet,

this summary about current behavior of network protocols helps to understand the influence of

additional protocol features on Internet traffic and can contribute to an improvement of future

simulation models.
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Additionally, a number of anomalies and inconsistencies have been observed, serving as

pointers to keep in mind for protocol and application developers. As one cause for the otherwise

rare occurrence of IP fragmentation additional headers introduced by VPN have been identified,

advising application developers to use smaller MSS values. Furthermore, one single long-

duration UDP burst was observed while gathering protocol statistics. This was found to be an

UDP DoS attack, undetected by the network management tools in operation. This indicates the

need for continuous refinement of network monitoring policies. The magnitude of the burst also

raises stability and fairness concerns, calling for addition of some kind of congestion control to

UDP. Finally, several types of misbehaviors within IP and TCP headers have been discussed.

The anomalies observed could be explained by three different causes:

• Buggy or misbehaving applications or protocol stacks

• Active OS fingerprinting [13]

• Network attacks exploiting protocol vulnerabilities

Even though all header anomalies observed are rare compared to the total number packets, their

existence shows that developers need to carefully design implementations. Almost any possible

inconsistency in protocol headers will appear eventually, thus network protocols and applica-

tions have to be designed and implemented as robust as possible, leaving no vulnerabilities.

Since access to traffic on highly aggregated links is still uncommon for researchers work-

ing on network security, our results form valuable input to related research on topics like large

scale intrusion detection or traffic filtering. Besides quantifying the occurrence of different

header anomalies ’in the wild’, the results yield explanations for the origins of these commonly

observed inconsistencies. Not every malformed packet header is necessarily part of attacking

traffic, as proven by the example of the DNS server setting invalid fragmentation bits, but can

also be introduced by improper protocol stacks. This information can be relevant when refining

rule-sets for traffic filters, as applied in firewalls or network intrusion detection systems. Fur-

thermore, knowledge about the nature of header anomalies can be interesting for researchers or

developers creating stress tests for routers and other network components.
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Abstract 

Purpose: In this study, modern Internet backbone traffic has been investigated in order to 
study occurrences of malicious activities and potential security problems within Internet 
packet headers.  

Design/Methodology/Approach: Contemporary and highly aggregated backbone data has 
been analyzed regarding consistency of network and transport layer headers (i.e., IP, TCP, 
UDP and ICMP). Possible security implications of each anomaly observed are discussed. 

Findings: A systematic listing of packet header anomalies together with their frequencies as 
seen “in the wild” is provided. Inconsistencies in protocol headers have been found within 
almost every aspect analyzed, including incorrect or incomplete series of IP fragments, IP 
address anomalies and other kinds of header fields not following Internet standards. Internet 
traffic was shown to contain many erroneous packets; some are the result of software and 
hardware errors, other the result of intentional and malicious activities. 

Practical Implications: This study not only presents occurrences of header anomalies as 
observed in today’s Internet traffic, but it also provides detailed discussions about possible 
causes for the inconsistencies and their security implications for networked devices. 

Originality/Value: The results of this study are relevant for researchers as well as 
practitioners, and form valuable input for intrusion detection systems, firewalls and the 
design of all kinds of networked applications exposed to network attacks. 

Keywords:  Internet Measurement; Security; Header Anomaly; Vulnerability Classification; 
Malicious Traffic; Backbone Traces; 

Paper Type: Research Paper 

1. Introduction 
In this study, Internet backbone traffic has been investigated with respect to potential security 
problems and many security-related anomalies in packet headers have been found. Internet 
traffic contains many erroneous packets; some are the result of software and hardware errors, 
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other the result of intentional and malicious activities. We have searched for anomalies in 
contemporary, highly aggregated Internet backbone traffic. The results show that header 
problems can be found within almost every aspect being analyzed. In this study, 27.9 billion 
frames have been collected and protocol headers on network and transport layers have been 
analyzed in order to point out all behaviour that could potentially result in a security problem 
for connected hosts. As a result, a systematic listing of all possible packet header anomalies 
is provided, including their frequencies as seen “in the wild” on an Internet backbone link. In 
addition, the possible security implications of each anomaly observed are discussed. 

The study of backbone traffic gives a complementary view to studies of traffic with low level 
of aggregation, such as traffic in local networks. Backbone data provides the opportunity to 
gain a broader picture of different types of malicious traffic present on the modern Internet. 
Besides detection of various types of malicious traffic, specific attack patterns that never 
show up when studying traffic reaching a smaller network can be observed (e.g., distributed 
denial of service (DDoS) attacks). Furthermore, rare attacks are more likely to be detected 
within large amounts of diverse and aggregated traffic and might therefore also reveal 
previously unreported attack types. Some traffic may seem legitimate when studying only 
one host but may turn out to be malicious when studying a larger portion of the Internet.  

This study sets out to update and extend older studies (Bykova et al., 2001; John and 
Tafvelin, 2007; Mahoney and Chan, 2001) which have reported about packets not following 
modern Internet standards (IP, TCP, UDP, ICMP). Additionally, detailed figures about 
invalid use of fragmentation are included, which is an important security issue previously not 
covered in the same extent, with the exception of a study about general observations of 
fragmented traffic (Shannon et al., 2002). While the previous studies only focus on some 
specific aspects, the present study presents a wider, systematic overview of the most 
commonly found misbehaviours on the modern Internet and how, and in what extent, 
common protocols are misused by attackers in their search for vulnerabilities in Internet-
connected systems.   

As a result, frequencies of occurrence for different kinds of malicious traffic are presented, 
such as invalid IP packets headers, incorrect use of IP fragmentation, IP address problems, 
ICMP, UDP and TCP misuse. In the search for anomalies, possible vulnerabilities are listed 
in table form with references to the packet headers, an approach which should make it easy to 
find potential problems and make it possible to evaluate the completeness of the study with 
respect to what header fields are being analyzed. Besides identification of header anomalies 
deviating from accepted Internet standards, particular well-known attacks and their common 
names (e.g. Land, Jolt, sPing, Teardrop, Boink) are pointed out in the tables and the analysis. 

Many attacks like the ones described above are old and well-known and would therefore be 
expected to be very rare on the Internet and seemingly unlikely to be found in our data. 
However, the results of the study show that many of these attacks are still present on the 
Internet. One reason may be that the recent arrival of new operating systems and mobile 
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devices with small and newly written IP stacks (e.g., mobile phones and PDAs) may have 
made these attacks meaningful again. A recent example of this was the introduction of 
Windows Vista, where it turned out that the beta versions were vulnerable to a large number 
of such old well-known vulnerabilities (Newsham and Hoagland, 2006).  

This study shows that it is possible to detect many commonly known attacks from an analysis 
of network and transport layer packet headers. We therefore believe that our approach to 
identify potential problems and the scale of our datasets allow us to classify, detect and report 
a substantial portion of malicious, incorrect and unwanted traffic present on the Internet 
today. The results of this study should not only be interesting for practitioners and 
researchers but should also be valuable input for work with intrusion detection systems, 
firewalls and support the design of all kinds of networked applications that must withstand 
network attacks. 

1.1. Limitations 

In our study, it has not always been possible to correlate all packets or to find all series of 
packets belonging to a malicious activity. There may also be other limitations. The Smurf and 
Fraggle attacks, for example, are attacks where ICMP and UDP packets are sent to a 
network’s broadcast address. However, on the Internet backbone there exists no information 
about what addresses are used for local broadcast messages on smaller networks. Another 
limitation is that application-level data was removed immediately after data collection 
making it impossible to inspect the contents of the packets in order to validate, for example, 
DNS queries or to find problems in application level protocols. Finally, another group of 
attacks are link-level attacks such as ARP attacks which, of course, are not visible on the 
Internet and cannot be detected with this type of study. However, we strongly believe that 
these limitations do not affect the usefulness of this study in any significant way.  

1.2. Outline of the paper 

Section 2 describes possible anomalies in IP, TCP, UDP and ICMP headers. Different types 
of anomalies are divided into classes and possible security implications of each type of 
anomaly are highlighted. In Section 3, the real-life dataset used for the analysis is presented 
together with the methodology applied. Section 4 provides figures about occurrences of 
anomalies in the dataset according to the classification scheme presented in Section 2. 
Besides the figures, each anomaly is discussed and interpreted regarding its security 
implications. Section 5 concludes the study, highlights the main findings and gives 
recommendations for how to use the results.  

2. Classification of anomalies  
In order to provide a systematic overview of possible header misbehaviours and to ease the 
reading of this paper, the headers of the protocols being analyzed are shown in fig. 1-4 (IP, 
TCP, UDP and ICMP headers). Header fields highlighted in grey are considered to contain 
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potentially unusual or harmful values and are therefore included in this study. Roman 
numbers in the figures indicate different types of anomalies within the header fields and the 
tables below provide descriptions of each anomaly. This type of classification makes it 
possible to identify all packets violating Internet standards in any way. The motivations for 
investigating many of the anomalies can be found in the right column of the tables. 

 

               

        

           

            
 

General IP header errors: 
 

I  Actual IP packet length is not large 
enough to host a complete IP and 
transport header  

Truncated packets might be used to confuse 
firewalls or remote hosts 

II  Packet according to HDLC header 
Ethertype should be IPv4, but IP 
version is not 4 

This is a general protocol error and these 
packets should have been removed by 
Internet routers 

III   Header length field less than 
minimum IP header length of 20 
bytes 

Same type of error as in II above. 

IV  Total datagram length value is not 
sufficient to host IP and transport 
header (TCP,UDP,ICMP) 

Such inconsistencies might be used to 
confuse firewalls or remote hosts 

 

Figure 4: ICMP header structure Figure 3: UDP header structure 

Figure 2: TCP header structure Figure 1: IP header structure 
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IP address anomalies: 
 

V  Source address equal to destination 
address  

Can confuse a host to start sending 
responses to itself (Land and other DoS 
attacks) 

VI  Traffic to or from private addresses 
(RFC 1918) and reserved addresses 
like loopback, class E, link local or 
“this network” addresses  

These addresses should not be seen. If 
delivered to hosts, packet may create 
confusion or may cause unwanted or 
illegal traffic on local networks. 

 

IP fragmentation anomalies: 
 

VII  First fragment too small to contain 
full transport header (only for TCP, 
UDP and ICMP) 

No reason such fragments should occur 
except when trying to confuse firewalls 

VIII  Single packets with MF flag or 
Fragment offset 

Either the result of lost fragments or 
attacker may try to use up buffer space at 
receiving hosts (DoS) 

IX  Gaps in datagram when assembled 
(including missing first or last 
fragments) 

Attempts to trigger bugs in the 
reassembly code or to exhaust buffer 
space at the receiving host (DoS), 
(Boink, Opentear, Frag) 

X  Overlapping fragments Attempts to trigger bugs during 
datagram reassembly or to traverse 
traffic filters with malicious code inside 
the datagram  
(Teardrop, Newtear, Jolt, Nestea) 

XI  Duplicate fragments (with or without 
different contents) 

Fragments overwriting its own contents, 
especially the first fragment, may be 
used to confuse firewalls that believe 
they have already inspected the TCP 
header 

XII  Fragment makes assembled datagram 
exceed max. IP packet length of 64 
Kbytes 

Attacks where fragment offset plus 
datagram size exceeds 64 Kbytes IP 
datagram limit. A possible buffer 
overflow problem.  
(Ping-of-death, sPing, IceNewk) 

XIII  Invalid IP flag combinations May confuse receiving hosts or firewalls 
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Potential IP header problems: 
 

XIV  Small TTL values (values smaller 10) Could be result of topology mapping scan 
(or legitimately used by e.g., traceroute) 

XV  IP option(s) used IP options can be used to circumvent 
normal routing or to cause other 
problems (e.g., strict source routing). Not 
necessarily erroneous, but suspicious. 

XVI  IP option length not matching 
announced IP header length 

May confuse receiving hosts or firewalls 

 

General transport header errors: 
 

XVII  TCP header length or UDP length fields 
less than minimum header length of 20 
bytes/8 bytes resp. 

May confuse receiving hosts or firewalls 

XVIII  TCP reserved bits set Must be zero according to RFC 793 

XIX  Source or destination port of zero 
(UDP, TCP) 

Should not occur in ordinary 
communication if the host expects a 
reply. Such packets could confuse hosts 
when receiving them or replying. 

 

Invalid or unusual use of TCP flags: 
 

XX  Invalid combination of TCP flags  
(multiple signalling flags, zero flags ) 

Examples are Xmas packets which are 
results of setting random flags in hope to 
create confusion at endpoints or to 
fingerprint operating systems. 

XXI  TCP SYN segment fragmented  SYN segments should never be 
fragmented 

XXII  TCP SYN segment contains data 
(except T/TCP)  

Data in SYN segments serve no practical 
use 

XXIII  ACK number of zero and ACK bit set Could be result of ACK or FIN scan 
attacks.  

XXIV  Urgent data pointer value when URG 
flag set  

Has been used for DoS attacks (e.g., 
WinNuke) 
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TCP option errors: 
 

XXV  TCP option type invalid May confuse receiving hosts or firewalls 

XXVI  TCP option length not matching 
header length 

May confuse receiving hosts or firewalls 

XXVII  TCP option length equal to zero Applications (e.g., Symantec Personal 
Firewall) might loop endlessly when 
parsing such options 

 

ICMP anomalies and general statistics: 
 

XXVIII  ICMP length anomalies ICMP messages not following standards 
(too small or too large for specific 
type/code) 

XXIX  ICMP types and codes Source Quench may slow down senders 
(DoS), Redirect may place attacker as man 
in-the-middle 

 

3. Data description and methodology 
The dataset used in this study (John and Tafvelin, 2006) was collected from September to 
November 2006 on an OC192 backbone link of the Swedish University Network (SUNET). 
The packet header traces have been collected on a highly aggregated backbone link at 277 
randomly selected times during 80 days, in order to provide a good statistical representation 
of all Internet traffic during the time-period at this location. At each randomly selected time, 
two traces of 10 minutes duration were stored. When recording the packet level traces on the 
2x10GB links, payload beyond transport layer was removed and IP addresses were 
anonymized due to privacy concerns using the prefix preserving CryptoPAN (Xu et al., 
2001). After further pre-processing of the traces as described in (John and Tafvelin, 2006) 
and (John and Tafvelin, 2007), the traces were moved to a central storage. An analysis 
program was run on the raw traces to extract malformed packet headers and invalid series of 
fragments. The reduced data was then stored in a database together with statistical summaries 
for each particular observation as listed in Section 2. For packets of special interest, 
corresponding flows have been extracted from the raw traces and analyzed in detail using 
available packet visualization software. 

The complete dataset consists of 554 traces including 27.9 billion frames. 99.98% of the 
traffic was IPv4 carrying 19.5 TB of data in 636 million flows. During the single 10 minute 
intervals, depending on time of day, between 13,000 and 37,000 unique IP addresses were 
observed belonging to the region of western Sweden connecting to 300,000-1,000,000 unique 
addresses on the main Internet. A breakdown of transport protocols in the IP traffic is 
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summarized in Table 1. Not only numbers and fractions of packets are shown but also IP 
fragments and fragment series are listed (first three lines).  
 

 

 
 

The analysis of fragmented traffic requires correlation of fragmented IP packets to create 
fragment series. Following Shannon (Shannon et al., 2002), a fragment series has been 
defined as a list of fragments observed on the network derived from a single original IP 
packet. Consequently, fragments have been grouped into fragment series based on the IP ID, 
protocol and the source and destination IP fields. Furthermore a timeout value of one second 
was chosen to further separate fragment series. As opposed to the study by Shannon et al. 
(2002) which was carried out on OC12 links, the timeout had to be chosen smaller in order to 
compensate for the higher throughput of the links measured (OC192). In rare cases, 
wraparounds of the IP ID space have been observed within a few seconds, which made such 
a small timeout necessary. Considering the transmission rates of modern computers, a 
timeout of one second seems to be sufficient to capture all fragments belonging to a certain 
series, which was proven to be true by a number of empirical tests on the dataset. 
Furthermore, fragment series observed in the first or the last second of a measurement 
interval have not been tested for completeness, in order to avoid bias due to border effects.  

Earlier studies have shown that only 0.06% of the traffic was fragmented on the measured 
network (John and Tafvelin, 2007). The increased fraction of IP fragments in the dataset used 
for this study (0.9%) is explained by a special bulk data transfer event from a space 
observatory to a data centre in Europe. During 7 time intervals, 213 million fragments in 9.4 
million fragment series have been transferred on the outgoing link using a customized fast 
bulk transfer protocol based on UDP. Figures for the remaining fragmented traffic without 
the mentioned bulk transfer are summarized in the final two rows of Table 1. Disregarding 
this special event, only about 0.15% of the IPv4 traffic was fragmented. 
 

4. Observed misbehaviours and anomalies 
In the following subsections, occurrences of the anomalies classified in Section 2 as seen in 
our dataset, are presented in tables. The index columns use the same Roman numbers as 
introduced earlier. For IP level anomalies a transport protocol breakdown is provided as well. 

Table 1: Transport protocol breakdown 
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Each table is followed by remarks and discussions about the anomalies being observed, 
including an interpretation and discussion of their probable causes. 

4.1. IP header anomalies 

I – IV: Packets with an insufficient actual packet length to carry the minimal IP and transport 
headers (I) have been seen very rarely, originating from different IP addresses at different 
times. 105 of these packets also announced insufficient sizes in the IP total length field (IV). 
IP version numbers not agreeing with the HDLC Ethertype (II) or IPv4 header length fields 
smaller than 20 (III) have not been seen at all. Since these errors rarely happen and no well-
known attacks exploit such anomalies, we believe that these packets are caused by rare IP 
stack errors. 

V: Packets with a source IP address equal to the destination address, as used in the Land 
attack, have been seen 321 times. The original land attack was based on TCP SYN packets 
which has been observed 9 times in the dataset. Most packets with this anomaly are UDP 
segments, which means that they are modified versions of Land. These packets have been 
observed at 158 different times, sent between a number of different IP addresses. 

VI: IP packets to or from reserved address spaces have been observed in relatively large 
numbers. A couple of hundred such packets are observed at each of the 277 measurement 
times, with exception of two 10 minute intervals with peak numbers of around one million 
each.  The majority (95%) of these packets use a source IP addresses belonging to the private 
class C address room 192.168 /16 even if private class A (10 /8) and class B (172.16 /16 – 
172.31 /16) have also been observed as source addresses (5%). Traffic from loopback, link-
local, class E or this-network addresses have been recorded, but in very low numbers. Most 
of the packets in this category are ICMP echo replies (type 0) with length of 228 bytes to four 
destination hosts during two measurement intervals. We believe that this was an ICMP DoS 
attack, where Echo replies were chosen to evade stateless firewalls. In order to disguise the 
real origin, spoofed private addresses were chosen. The remaining 300,000 packets, which 
appear in a more random and spread out fashion, could also be attacks but might as well be 
caused by misbehaving or misconfigured NAT gateways. 
 

 

 
 

Table 2: Packet counts observed in 27.8 billion IP 
packets 
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XIII: The only defined values for the three IP flags are don’t fragment (DF), more fragments 
(MF) or no bits set. However, 265,000 packets with other, undefined bit values have been 
observed, which is an increase compared to previous studies (John and Tafvelin, 2007). All 
possible bit combinations have been seen, with MF+DF responsible for 99% of the invalid 
combinations. Most IP packets with invalid flag values carry UDP traffic, but no source or 
destination hosts or port numbers stand out. Furthermore, such packets are seen within each 
of the 277 traces, with a few traces carrying relatively large numbers of up to 10% of the 
packets. We believe that these packets are mainly forged packets by hacker tools like nmap in 
order to test robustness of implementations. Furthermore, a previous study (John and 
Tafvelin, 2007) also found indications that erroneous IP stack implementations contribute to 
this behaviour. 

XIV: While the usage of small TTL values is no unusual behaviour per se, it might still 
indicate topology map scanning as preparations for specific attacks towards a network. 
Modern operating systems use default TTL values of 60 or more. Network paths with hop-
counts of more than 50 are very rare, which means that IP packets with small TTL values can 
be explained by: 
 

• old Windows systems with TTL values of 32 (hop-counts between 20 and 30 are plausible) 
• packets from traceroute applications (commonly only ICMP and UDP) 
• topology mapping scans using TCP or UDP on common ports in order to avoid ICMP filters  
 

Indeed, 99.6% of the ICMP packets with a small TTL are of type 8 (echo), which is used for 
traceroute in Windows systems and some Unix versions. The remaining ICMP packets with 
small TTL values are of type 3 (destination unreachable). Their packet length of 28 bytes 
indicates that they are replies to either UDP or ICMP packets. Hosts receiving these ICMP 
type 3 messages typically show heavy activity on UDP ports known to be commonly used for 
P2P signalling traffic, which leads to the conclusion that the messages are artefacts of the 
unreliable nature of P2P overlay networks and thus are most likely not a security issue.  

Many Unix systems use UDP packets with varying size of around 40 bytes for traceroute 
with a destination port within the otherwise uncommon port range 33434 to (around) 33534. 
92% of the UDP packets with short TTL fall into this port range and since they are small in 
packet size, they are most likely legitimate traceroute packets. The remaining 8% UDP 
packets are not only directed to other random port numbers, they also have larger packet sizes 
between 100 and 1500 bytes, which indicates that they must be treated as suspicious. 

Most of the TCP packets with small TTL values are the downstream part of regular TCP 
connections. They also show TTL values of 8 or 9 which is larger than the traceroute traffic 
observed for ICMP and UDP (TTL values of 3, 5 or 6 for this specific topology), which 
consequently is too large for topology mapping scans. These remote hosts are therefore most 
likely running a system with a small default TTL value, such as Windows NT or 95. This 
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leaves about 5300 packets to be suspected as topology mapping scans via TCP (suitable TTL 
values with small packets). 

Additional 55,500 packets of protocol type 103 (PIM–protocol independent multicast) have 
been observed with TTL values of exactly one – which are valid PIM bootstrapping messages 
following RFC 2362. 

XV, XVI: As already observed in a previous study (John and Tafvelin, 2007), IP options are 
rarely used. Source routing is the main security concern regarding IP options, but has not 
been observed at all (neither IP option value 131 nor 137). A large part of the packets with IP 
options is sent by 10 sources to one destination inside Gothenburg via UDP. Strangely, 
instead of using real options, a sequence of four EOOL bytes is sent (0,0,0,0) which is most 
likely due to inappropriate configuration or buggy software.  The options used by ICMP 
traffic are of valid option type 7 (record route), and the remaining 948 IP options observed 
are option type 148 (router alert) being sent within RSVP packets. IP option header length 
inconsistencies (XVI) have not been observed. 
 

4.2.IP fragmentation anomalies 

The figures of IP fragmentation anomalies in the dataset used are skewed due to one 
exceptional event, where exactly one host inside a University was sending UDP segments 
fragmented into 6-7 fragments to five different hosts at five different measurement times 
during a few days, in very high frequency. As destination port number, the entire 16 bit port 
space was used in iterative fashion. About 50% of the IP series included different types of 
inconsistencies, most with missing last fragments, but also other gaps and a number of 
“single packet series”. Most likely this is a hijacked host used for directed DoS attacks (such 
as a Frag attack). The 1.6 million fragment series from this host have been summarized in 
the first row of Table 3 and are excluded from the remaining analysis. 
 

 

 
 

VII, XXI: Fragment series where the first fragments are too small to contain all headers (VII) 
are observed in 71 series sent by a single host. The fragments had furthermore the TCP SYN 
flag set (XX) and the IP total length field was smaller than 40 bytes (IV). This is probably a 
DoS attack trying to confuse firewalls or receivers. 

Table 3: Fragment series counts observed in 20.8 million 
series 
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VIII:  About 81,000 packets appear to be part of a fragment series (either MF bit or fragment 
offset set), but no other fragments are observed for the same series. This could potentially be 
used to confuse hosts or firewalls. Another plausible explanation is that further fragments 
have been dropped or routed asymmetrically. Around 10% of the single-packet series used IP 
IDs of zero, which means that IDs of zero are around 1,500 times more common than any 
other possible number in the 16-bit space. This obvious over-representation of one IP ID is 
suspicious and indicates either malicious intentions or usage of protocol implementations not 
following Internet standards. 58% of the single fragment series have the MF bit set and are 
full sized packets (~1500 bytes), looking like typical first packets in fragment series. The 
remaining 42% have characteristic properties of last packets in fragment series, with IP offset 
values set and small data portions. These observations suggest that dropped packets could be 
an explanation for many of these packets.  

IX: Incomplete fragment series are very undesirable because they consume resources at the 
receiving host which needs to store the arriving fragments until the series is complete and the 
entire packet can be handed over to the next protocol layer. Known attack types in this 
category are Opentear and Frag. Around 50% of incomplete fragment series are missing the 
last fragment, a missing first fragment accounts for 25% and the remaining 25% are gaps in 
between. In the dataset, 42 hosts receive about 80% of all the incomplete series. The 
incomplete series are sent by different hosts and are targeted to random UDP ports. The sizes 
of the gaps range from 8(!) bytes to full packet size. Besides these incomplete series, valid 
series of fragments are also sent to the hosts in question and only around 1/5 of all fragment 
series are actually incomplete. Even though this behaviour could be explained by a high 
number of packet losses along the path, a suspiciously high density of IP IDs of zero together 
with the unusual gap size of 8 bytes makes it more likely that these hosts are the target of a 
DDoS attack by a number of bots, similar to the hijacked host causing the exceptional event 
described above. 

X:  Overlapping fragments are also known to be a common DoS attack type (such as 
Teardrop, Jolt and Nestea). Overlaps are very rare in the dataset and only 37 occurrences 
have been observed at 35 times between different hosts, mainly UDP. Almost all series with 
overlaps (35) also include missing sections in the complete IP datagram. The small 
overlapping fragments (8 to 48 bytes) have exactly the same size as the gaps in the specific 
series, but they fill the gaps at the wrong offset. Depending on the length of the series, such 
overlapping fragments appear up to 3 times per series, with the last byte of the overlapping 
fragment always at the datagram offset of 912, 1832 and 5352 bytes. We believe that this 
consistent behaviour is either the result of a soft- or hardware error or an attack tool repeating 
the same behaviour. 

XI: In contrast to overlaps, duplicate fragments mean that two fragments cover the exact 
same portion (offset and fragment length) within the fragmented datagram. Potentially, this 
could cause similar problems as overlaps in Teardrop attacks, namely overwriting previous 
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benign portions with new malicious data. Since packet payload in our dataset has been 
removed, we need to rely on transport header checksum information (note that transport 
header checksums in fragment series are only available in the first fragment, so changed 
payload in following fragments cannot be detected in the present study). According to a 
checksum comparison of duplicate first fragments, many duplicate fragments observed are in 
fact sheer retransmissions. There are also sequences of duplicated single fragment series 
(VIII) which are therefore categorized as duplicates as well. Note that an unproportional large 
number of these single series duplicates use IP IDs of zero, which again appears to be a good 
criteria for identification of malicious fragmented traffic. Duplicated fragments with different 
payload (and consequently different transport header checksums) within otherwise complete 
and valid series have only been observed 104 times by 21 hosts. 

XII: Attacks, with fragment series exceeding the maximum IP packet length of 64 Kbytes 
(Ping-of-death, sPing, IceNewk), are not observed at all. This attack type was popular in the 
late 90’s, but since then most applications and operating systems have been patched. Even 
though it is good news that this attack is not observed anymore, application developers and 
firewall administrators should keep this attack in mind. 
 

4.3.TCP header anomalies 

In the first row of Table 4 TCP segments with multiple invalid header fields have been 
summarized. Garbled TCP headers have been defined as combinations of two or more 
independent1 field anomalies within one TCP header. Garbled headers have been observed 
during all measurement intervals with no specific host standing out. Such packets can easily 
be forged by network exploration tools using raw sockets, such as nmap. Note that the 
segment counts in the following categories do not include the 9,757 garbled TCP headers. 
 

 

 
 

                                                
1 i.e., anomalies in different fields. XVIII / XX and XXV-XXVII are considered dependent  

Table 4: TCP segment counts observed in 25 billion TCP 
segments 
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XVII: TCP headers with length values smaller than the minimum TCP header length of 20 
bytes have been observed 72 times. The announced header length values are mainly zero and 
eight bytes. 

XVIII: The reserved bits in the TCP header are the four bits following the TCP header length 
field. The previously six reserved bits have been reduced to four since the introduction of 
ECN (RFC 3168). In this study, the ECN bits have not been considered. According to the 
TCP specification (RFC 793) the reserved bits must be zero. However, almost 115,000 
packets with non-zero reserved bits have been observed in the dataset. Interestingly, TCP 
reserved bits are only set together with TCP flag combinations of either RST/ACK or 
SYN/ACK. 21% of the invalid reserved bits have all 4 bits set and appear consistently with 
RST/ACK packets. These RST/ACK packets are mainly replies from HTTP servers on port 
80. Valid TCP conversations are closed by the servers with sequences of 3-4 RST/ACK 
packets, where each but the initial RST/ACK has all reserved bits set. This appears to be an 
incorrect TCP implementation rather than a security issue.  

The remaining 79% of TCP headers with invalid reserved bits appear within SYN/ACK 
packets only, but this time with different bit combinations. These SYN/ACKs are sent in high 
frequency by different sources, usually from port 80 or 7000. Interestingly, no SYN packets 
triggering these SYN/ACK responses and no further packets originating from these sources 
have been seen. This behaviour can either be explained by an asymmetrically routed (and 
therefore un-captured) SYN attack, but more likely are SYN/ACK attacks. In this case the 
often used source port of 80 can be explained by attempts to pass certain stateless firewalls. 

XIX: TCP port number zero is reserved and should not be used for data transfer. 
Nevertheless, 6,180 TCP segments with a port number of zero have been observed equally 
shared between source and destination port numbers. These segments have been sent by 
approximately 700 different sources within almost all measurement intervals. Most of these 
packets are SYN packets being part of host scanning campaigns. Very few of them are 
actually replied to with RST/ACK packets. 

XX: Anomalies within the 6-bit TCP flags field have been divided into invalid combinations 
of the signalling flags SYN, FIN and RST (XX-a) and another, less critical, but still 
unexpected flag value (XX-b). 

XX-a: Combinations of invalid signalling flags appear in frequencies comparable to obser-
vations in an earlier study (John and Tafvelin, 2007). 826 segments had no signalling flags 
set at all (zero flags). The combination RST+FIN in the same header has been observed 939 
times, SYN+FIN 435 times and 377 segments had SYN+FIN+RST set. The most common 
flag anomaly however is RST+FIN with more than 176,000 occurrences. Packets with invalid 
signalling flag combinations have been seen evenly distributed within all traces, sent by more 
than 45,000 hosts to different destinations where approximately 50% are directed to port 80. 
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The most likely explanation for such segments is crafted packets (such as X-mas) by network 
exploration and testing tools like nmap. 

XX-b: Beside combinations of signalling flags, another type of unexpected flag values has 
been observed. According to the TCP specification, every segment in an established TCP 
connection (except the initial SYN) is required to carry an ACK, so there is no reason for 
pure FIN packets to exist. Mahoney (Mahoney and Chan, 2001) showed that identification of 
FIN packets without an ACK can reveal port-sweeps and OS fingerprinting campaigns. In 
our dataset, 82,000 segments with only FIN flags set have been observed, sent by 10,000 
different hosts to 27,000 destinations.  Interestingly, more than 50% of these packets are sent 
to different well known P2P ports. Most pure FIN packets are sent after a sequence of SYN 
connection attempts just before the socket is finally closed on the sending host after the TCP 
timeout. Even if this behaviour is not defined in the standards, we do not consider it to be 
security relevant. 

XXII: According to RFC 793, it is not prohibited to append payload data to SYN packets. 
However, this behaviour is de facto non standard and therefore somewhat suspicious. The 
only well defined usage of SYN packets with data is T/TCP (RFC 1644) which can be 
identified by TCP options. However, this has not been observed in this dataset. Around 
29,000 SYN packets with data had a data portion of exactly 24 bytes and have been sent to 
TCP port 53 (DNS). These packets are seen quite evenly distributed among all measurement 
times and are exchanged between about 113 different IP addresses outside the region of 
Gothenburg to 66 hosts inside. The connections are initialized by this SYN data segment, 
replied by a SYN/ACK and then immediately closed by the initiator with a RST. According 
to SANS Intrusion Detection FAQ (SANS, 2008) this behaviour has been observed in other 
networks and is probably caused by a common but buggy DNS system. Other segments with 
SYN flags and data have only been observed in packets with garbled TCP headers. 

XXIII: TCP sequence and acknowledgement numbers use 32-bit integers. Even if the 
selection of initial sequence numbers (ISN) is known not to be completely random for many 
systems (Zalewski, 2002), 390,000 out of 25 billion segments having an ACK number of 
zero is a clear overrepresentation. It turned out that 96% of these packets are RST/ACK 
segments. A large portion of these segments is sent by hosts closing valid connections with 
series of RST/ACK packets. In these connections, all but the initial RST/ACK packets  
carried an ACK number of zero, which appears to be an implementation problem rather than 
malicious activity. In addition, some RST/ACK storms have been observed with no SYN 
packets that could have triggered these replies. This behaviour could be explained by an 
asymmetrically routed (and therefore un-captured) SYN attack, but more likely as RST/ACK 
attacks where the ACK number field was left empty (zeros). The remaining ACK numbers of 
zero (4%) are pure ACK packets sent between a large number of hosts, thus there is no 
indication of obvious malicious intentions. 
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XXIV: Urgent pointers are basically a valid way to transmit “out of band” data within the 
regular TCP stream of a connection, used e.g., for quick delivery of control strings in 
applications like telnet or ftp. However, in the past urgent pointers have turned out to be an 
effective way for DoS attacks due to buggy operating systems (WinNuke) - regardless of the 
actual value of the urgent pointer. This means that many firewalls today drop all packets with 
urgent pointer flags. In the dataset, 3,389 TCP segments carried an URG flag, though none of 
these packets were directed to port 139, the target of the infamous original WinNuke attack. 
Most of the URG segments had generally garbled TCP headers and only 440 “pure” URG 
flags have been observed. 71 of these packets have been sent to port 21 (ftp) with plausible 
urgent pointer values of 2 – 4 (e.g., for control characters like “ctrl-c”). The remaining pure 
URG segments have been sent to different P2P port numbers with urgent pointer values of 
one or zero. Especially urgent pointers pointing to a data offset of zero are suspicious since it 
indicates that there is in fact no data to deliver urgently. 

XXV - XXVII:  TCP option anomalies in this dataset have been observed in frequencies 
comparable to results of a previous study (John and Tafvelin, 2007). Three different 
anomalies (XXV-XXVII) have been observed in different combinations within 9,000 TCP 
segments. Such packets are most likely crafted by tools like nmap. The most common 
inconsistencies are either usage of undefined option types (TCP options are only defined for 
type numbers up to 26) and length announcements in the length field of specific options 
which do not agree with the header length of the general TCP header. Additionally, 967 
options carried an option length value of zero which has been shown to cause endless loops 
when processing them in receivers and traffic filters (e.g., Symantec Personal Firewall). 
 

4.4.UDP header anomalies 
 

 

 
 

XVII: 67 packets with too small values in the UDP length field have been observed in 56 
different measurement intervals sent by 59 different hosts. The most common invalid header 
length value is zero. Only two packets announced header length of one and two, which is too 
small to carry the minimum UDP header length of 8 bytes. The low frequency of this 
anomaly does not allow us to reliably classify this as a malicious action.  

XIX: As for TCP, UDP port numbers of zero are also reserved. In the dataset, around 3,000 
UDP segments have been sent to UDP port zero, which is definitely not permitted and can 
lead to crashes of hosts or firewalls. According to the UDP specification (RFC 768) the 
source port number field is optional and may be set to zero if not used, i.e., no reply is 

Table 5: UDP segments observed in 2.7 billion UDP 
segments 
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expected. A large portion of about 14,000 packets has been seen with source port values of 
zero. Even if this behaviour per se is permissible, it turned out that all the segments coming 
from UDP port zero are sent in short scanning campaigns, scanning over ranges of /24 
networks (254 IP addresses) on port numbers 1025 and 1026 (win-rpc). Such campaigns have 
been launched by 30 different hosts at 30 different times. The payload length of all these 
packets was consistently 319 bytes. UDP Source port numbers of zero therefore seem to be 
good indication of windows messenger spam, where spammers sweep over IP ranges and try 
to deliver pop-up messages to windows systems with windows messenger active. 
 

4.5.ICMP anomalies and observations 
 

XXVIII, XXIX: A breakdown of observed ICMP packet types is presented in Table 6. ICMP 
messages with undefined type or code are summarized in the second last row of the table. 
Furthermore, messages with impossible length values according to their ICMP types are 
summarized in the last row. This means that the counts and fractions presented per ICMP 
type are counts of packets with valid types and codes and plausible length values. In the 
following paragraphs, this table will be analyzed regarding possible ICMP attacks.  

Ping-of-death type attacks, where a fragmented ICMP packets exceed 64 Kbytes when 
assembled, have not been observed (in fact no such fragments attacks were detected, see 
XII). There where also no ICMP p-Smash attacks (floods of ICMP router advertisements 
(ICMP type 9)). 

Spoofed ICMP destination unreachable messages (type 3), as used in a Smack attacks, 
could be present in the dataset, but are difficult to pinpoint in this study due to anonymized IP 
addresses and missing payload of the ICMP messages. However, neither source nor 
destination hosts appeared to be involved in unusually dense sequences of ICMP type 3 
messages during the 277 measurement times. 

Also ICMP source quench messages (type 4) have been reported to be exploited in order to 
slow down networks. In the dataset, almost 38,000 such messages have been seen and even if 
such DoS attacks cannot be ruled out, no obvious attack patterns were identified. 

The large number of ICMP redirects is caused by two hosts sending about 46 million ICMP 
packets with type 5, code 1 (host redirect) to 300,000 destinations during the measurement 
intervals within a period of 12 days. The general behaviour of these hosts clearly shows that 
they are not routers or gateways but rather normal workstations establishing only connections 
to HTTP and P2P hosts. Most likely, these packets are part of a DoS attack like Winfreez, 
which can cause windows machines to change their routing tables. Unfortunately, missing 
packet payload makes it impossible to analyze the announced gateway addresses in the 
redirect messages observed. 
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ICMP timestamp attacks, like Moyari13, cannot be identified since the timestamp 
information has not been preserved in the dataset. However, all timestamp messages (type 13 
and 14) have valid packet lengths. Furthermore, all except three timestamp messages (type 
13) have immediately been replied to (type 14), which does not indicate malicious behaviour. 

Undefined ICMP types and codes could potentially be part of Twinge or Trash attacks, 
which cycle through all types and codes, thereby trying to create confusion or crash certain 
operating systems. The 33,517 packets with random types and codes in the dataset have been 
sent between a couple of thousand hosts quite evenly distributed among all trace intervals, 
with no host or time interval standing out, which means that at least large scale campaigns of 
these attacks have not been observed. 

Finally, a quite large number of packets with valid types but invalid packet lengths have 
been observed. According to RFC 792 (ICMP), most messages except echo have well 
defined packet sizes or are at least bound to a maximum (often 56 bytes including 20 bytes IP 
header, 8 bytes ICMP header, 20 bytes original IP header and up to 8 bytes of original 
payload).  Almost all ICMP packets with invalid lengths are of type 3 (destination 
unreachable) and the remaining 2% are of type 11 (time exceeded), having packet sizes 
exceeding 56 bytes. Since a large number of hosts were sending these packets in small 
frequencies, it is likely that most of these are the result of implementations with wrong 
interpretation of the ICMP standard. Only three ICMP messages have been observed with 
insufficient IP packet lengths to host an ICMP header.  
 

5. Summary and Conclusions 
In this paper, we first provide a systematic classification of header fields not following 
Internet specifications with a potential to cause security problems. This systematic 

Table 6: Breakdown of 97.2 million ICMP packets 
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classification serves as a starting point for identification of such header inconsistencies within 
our large dataset consisting of packet header data collected on a contemporary, highly 
aggregated Internet backbone link with diverse traffic composition. Occurrences of each 
header anomaly as observed “in the wild” are then presented followed by detailed discussions 
about possible causes and an interpretation of the observations with respect to the relevance 
for security. 

As a general observation, it is surprising to see that that many old, well known attacks can 
still be found. On the upside, some former popular attacks, such as Ping-of-death and the IP 
source route exploit have not been observed at all. Generally, a constant “noise” of 
malformed or inconsistent packet headers was observed, similar and consistent with the 
observations of constant scanning activities in another recent connection-level study (John et 
al., 2008). This type of background noise is in some cases likely to be caused by rare 
hardware and software errors, but most must be attributed to the possibilities even 
inexperienced hackers have today to generate more or less random packet headers with 
existing networking tools.  

Also a number of exceptional events of malicious activity have been observed. An ICMP 
DoS attack with otherwise unsuspicious echo reply messages has been identified due to IP 
address analysis regarding reserved IP spaces. A sequence of fragmented datagrams has been 
sent in high intensity from a single host during short time intervals. The detailed analysis of 
the fragment series revealed a directed Frag attack, using incomplete fragment series with the 
intention to exhaust resources at the receivers. Furthermore, an analysis of IP ID values of 
zero appeared to be a successful approach to detect different fragmentation anomalies, and 
observations in the reserved bits field of the TCP header revealed a series of SYN/ACK 
attacks. Port number values of zero proved to be effective in detecting port scanning 
campaigns, both for TCP and for UDP. Finally, a DoS attack applying ICMP redirect 
messages has been observed. 

There are many interesting future research possibilities to improve the results and insights of 
this study, such as a complementary flow-level investigation of scanning traffic or a similar 
packet inspection including at least some application-level data, to name but a few. However, 
the results of this study show that it is possible to detect a substantial part of malicious 
activities just from inspection of header data. The observations also show that inspection of 
IP addresses spaces, IP ID values, port number values, the entire flags section in the TCP 
header (reserved bits and signalling flags) and ICMP messages are the most effective 
mechanisms to find malicious traffic and therefore form a basic set of rules which should be 
included into all modern firewall and IDS systems. 

The results presented here are based on a rare dataset of aggregated backbone traffic and are 
intended to guide and support network administrators and application developers in their 
constant task of tuning their systems in order to mitigate the wide range of incoming 
  

DETECTION OF MALICOUS TRAFFIC ON BACKBONE LINKS VIA PACKET... 141



  

malicious attack traffic. Furthermore, we believe that this study helps researchers and 
practitioners to gain a better understanding of the characteristics of today’s Internet traffic in 
order to remain proactive. 
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Abstract

The assumption of routing symmetry is often embedded into traffic analysis and clas-
sification tools. This paper uses passively captured network data to estimate the amount of
traffic actually routed symmetrically on a specific link. We propose a Flow-Based Sym-
metry Estimator (FSE) – a set of metrics to assess symmetry in terms of flows, packets
and bytes, which disregards inherently asymmetrical traffic such as UDP, ICMP and TCP
background radiation. This normalized metric allows fair comparison of symmetry across
different links. We evaluate our method on a large heterogeneous dataset, and confirm anec-
dotal reports that routing symmetry typically does not hold for non-edge Internet links, and
decreases as one moves toward core backbone links, due to routing policy complexity. Our
proposed metric for traffic asymmetry induced by routing policies will help the commu-
nity improve traffic characterization techniques and formats, but also support quantitative
formalization of routing policy effects on links in the wild.

1 Introduction
In today’s Internet, path stability is not guaranteed, i.e. many nodes along a path offer alterna-
tive routes to the same destination. If packet streams between two endpoints follow the same
physical links1 between intermediate nodes for both forward and reverse direction, they are
symmetrically routed. Otherwise, routing between this pair is asymmetric. A common cause
of routing asymmetry is “hot-potato routing”, the business practice of configuring traffic cross-
ing one’s own network to exit as soon as possible. Another cause is link redundancy within
networks or multipath routing. Since routing decisions occur independently for each flow2,
load-balancing may cause different flows destined for the same endpoint to follow different
physical links, even if all the intermediate nodes are the same.

1Optical links, generally composed of a pair of unidirectional fibers or wavelengths, are here considered as one
physical link.

2To our best knowledge, most routing is done on a flow- or IP-Pair level in order to minimize jitter and out-of-
order packets within sessions.
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Literature on routing asymmetry has mainly considered an end-to-end perspective, inferred
by active measurements of delay or path differences between endpoints [1, 2, 3, 4]. To our
knowledge, using passive measurement to quantify routing asymmetry observed on a specific
link has only received tangential reference [5]. We propose a technique that uses passive mea-
surements to quantify the amount of traffic routed (a)symmetrically on specific network links, in
terms of flows, packets and bytes. Using passively captured network data, the Flow-Based Sym-
metry Estimator (FSE) method provides an effective way to exclude traffic that is canonically
asymmetric, such as ICMP traffic or nonproductive TCP background radiation [6], allowing a
fair comparison of routing symmetry across different links with substantially different traffic
decomposition.

Knowledge of the fraction of symmetric flows on specific links is especially important to
traffic analysis and characterization tasks, which are often performed on data collected on single
measurement points. Researchers and developers often embed an assumption of traffic symme-
try in tools and analyses [7, 8, 9], an assumption only safe for stub access links, otherwise quite
harmful [10].

We wanted to provide the community with a technique and accompanying open source tool
for measuring flow symmetry, as well as raise awareness about macroscopic symmetry charac-
teristics by providing statistics from running such tools over a variety of data. We evaluated our
technique on traffic traces from four varied locations (Tier-2 to Tier-1 backbone) in two coun-
tries (USA and Sweden) over a period of four years (from 2006 till 2009), to provide a baseline
global data set on routing symmetry. Such data sets will allow tracking of macroscopic Internet
trends. Our main contributions are: (i) a simple method to assess and fairly compare routing
symmetry on specific links; (ii) an open source tool for analyzing flow symmetry based on our
method; and (iii) symmetry statistics for a large heterogeneous set of network traces.

Section 2 explains our choice and implementation of FSE to analyze flow symmetry. Sec-
tion 3 and 4 describe the data and the results of applying FSE to the data, resp. Section 5
validates the method and Section 6 concludes the paper.

2 Flow-based Symmetry Estimator

In this section we present the Flow-based Symmetry Estimator (FSE), a simple method (de-
picted in Figure 1) and associated tool3 to estimate the level of routing symmetry from pas-
sively measured flow data that takes unidirectional 5-tuple flow data as input. We could have
computed symmetry based on IP pairs (2-tuples), but most traffic classification and engineering
methods deal with flows [7, 8, 9], so we chose the flow granularity. We used CoralFlow (part
of CoralReef [11]) to extract interval-based 5-tuples of source and destination IP, port numbers
and protocol. Due to its simplicity, most traffic analysis tools [12] prefer this method to track-
ing TCP connection state, although we use TCP connection information extracted from packet
level-data [5] to validate our technique in Section 5.

3Available at http://www.cse.chalmers.se/∼johnwolf/FSE/
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1: given a time-interval of traffic trace:
2: consider TCP data traffic (TCP packets carrying data)
3: Tf (Tb) = set of tuples going forward (backward)
4: Tf∩ Tb = set of symmetric tuples TS
5: pkts (bytes) in TS=set of symmetric pkts (bytes)

Figure 1: The FSE method. After collecting a unique list of unidirectional flows for each direction of a link,
FSE classifies 5-tuples as symmetric if they appear on both lists. Packet (byte)-level symmetry is the fraction of
packets (bytes) sent between tuples classified as symmetric, so that the degree of symmetry can be quantified in
three dimensions: 5-tuple flows, packets, bytes.

2.1 Removing inherently asymmetric traffic from data

Our first step is to remove from the traces any traffic that is inherently asymmetric, such as UDP
and ICMP flows that do not always expect packet recipients to reply4, and which would mislead
symmetry comparisons if they appear in different magnitudes across networks. TCP back-
ground radiation, such as network scanning and probing, can also be a substantial fraction of
total inherently asymmetric flows on some links, although it is usually a much lower proportion
of bits [6, 14]. FSE discards ICMP, UDP, and TCP signaling packets with no data. As a heuristic
for the TCP category, we keep only TCP packets without signaling flags (SYN/FIN/RST) but
with the ACK bit set, thereby removing unreplied single-packet probes, scans, or attacks using
SYN, FIN, or RST flags. We call the post-filtered data TCP data traffic, reflecting the dominant
transport activity on the Internet [15, 16], at least so far.

2.2 Observation time interval

We use CoralFlow to create flow 5-tuples for a given observation interval. CoralFlow defines
flows by timeout interval, i.e., two packets sharing the same tuple belong to the same flow if
their timestamps are within a given time interval. CoralFlow splits traces into chunks according
to the specified time interval and collates unique lists of 5-tuples for each direction. The results
might be affected by border effects, i.e. long flows spanning many intervals, or short symmetric
flows that seem asymmetric because packet exchange occurs at the edge of an interval. We will
evaluate these effects by varying the time interval, described in Section 4.2.

3 Datasets

Table 1 lists the packet-level datasets we considered. The data from GigaSUNET was collected
on a backbone close to the edge of the Internet, on an OC192 link which was the primary link
from the region of Gothenburg to the main Internet outside Sweden. The link mainly carried
traffic from major universities and large student residential networks, but also from a regional

4While many application protocols communicate in bidirectional request/respond fashion over UDP (e.g.
DNS), related work has shown that UDP flows on some links are dominated by single-packet flows with no ob-
served response, such as P2P signaling and unsolicited traffic (scanning, DoS) [13].
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Time interval #flows pkt/s bytes/s Network loc.

GigaSUNET
2006-04 6x10min 8.9M 142Kp/s 790Mbit/s Tier2 backbone
2006-11 6x10min 15.6M 176Kp/s 1008Mbit/s (Sweden)

OptoSUNET
2009-01 6x10min 57M 358Kp/s 1700Mbit/s Tier2-Tier1 connection
2009-02 6x10min 62M 442Kp/s 2000Mbit/s (Sweden)

Eq-Chicago
2008-04 1x1hour 119M 717Kp/s 3970Mbit/s Tier1 backbone
2008-05 1x1hour 134M 936Kp/s 6100Mbit/s (Illinois-Washington)

Eq-SanJose
2008-07 1x1hour 145M 680Kp/s 3000Mbit/s Tier1 backbone
2008-08 1x1hour 139M 664Kp/s 3040Mbit/s (California)

Table 1: Dataset description. Two datasets are from OC192 links in Swedish networks: GigaSUNET, operative
until 2007, and OptoSUNET’s current connection to NorduNet. The latter two are from OC192 backbone links of
a Tier1 ISP in the U.S.

access point exchanging SUNET traffic with local ISPs. TCP was responsible for 42% of flows,
which corresponded to 93% of packets and 97% of bytes. UDP carried 55% of flows (6% of
packets and 3% of bytes). Other transport protocols, such ICMP, GRE and ESP, represented
minor traffic amounts.

In the current OptoSUNET, customers are redundantly connected to a central Internet access
point. Besides some local exchange traffic, the traffic routed to the international commodity
Internet is carried on two links (40Gb/s and 10Gb/s) between SUNET and NorduNet. The data
used in this study was collected on the 10Gb/s link, which according to SNMP statistics carried
50% of all inbound but only 15% of the outbound traffic volume. Around 20% of flows on the
link during the measurement interval have been exchanged via TCP, corresponding to 82% of
packets and 89% of bytes, while 79% of connections (16% of packets, 9% of bytes) have been
UDP flows.

The two core links are part of an OC192 Tier1 backbone operated by a commercial ISP
in the U.S. The first link connects Chicago and Seattle, monitored at an Equinix datacenter in
Chicago. The other one connects San Jose and Los Angeles, monitored at a datacenter in San
Jose. On those links, TCP is responsible for about 50% of flows, which was 85% of packets and
93% of bytes on average. UDP carried about 45% of flows (13% of packets and 6% of bytes).

4 Experimental results

We apply FSE to the datasets of Table 1 and discuss the impact of traffic composition, observa-
tion interval and flow granularity on routing symmetry estimation.

4.1 The impact of inherently asymmetric traffic

To evaluate the impact of flows that are inherently asymmetric on traffic symmetry estimates,
we first apply the method to all IP traffic, then on TCP traffic (i.e. disregarding UDP, ICMP
and other traffic) and finally on the proposed category: TCP data traffic. The last category
excludes nonproductive, inherently asymmetric TCP background radiation. Table 2 provides
the excluded TCP-signaling fractions, a reasonable estimate for the amount of (asymmetric)
TCP background radiation on our links, consistent with other studies [6, 14].
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Dataset % flows % packets % bytes Dataset %flows % packets % bytes

GigaSUNET
2006-04 32.36 4.85 0.15

Eq-Chicago
2008-04 19.19 5.60 0.51

2006-11 27.86 1.95 0.15 2008-05 23.62 4.31 0.34

OptoSUNET
2009-01 34.81 2.05 0.08

Eq-SanJose
2008-07 25.27 8.04 0.83

2009-02 34.74 2.05 0.09 2008-08 19.41 7.75 0.78

Table 2: TCP traffic carrying only signaling packets, as removed by the TCP data filter. The numbers are good
estimates for the amount of nonproductive TCP background radiation on the links.

Figure 2a provides box-plots5 of flow-based symmetry estimates (FSEs) for 10-minute sam-
ples of traffic filtered in three ways. Due to space constraints we only show symmetry in terms
of flows and bytes. As expected, the fractions of symmetric tuples increase when excluding
inherently asymmetric traffic (e.g. from a median of 53% to 69% for GigaSUNET 2006-04 and
from 2.7% to 5.5% for Eq-Chicago 2008-05). But the filtering operation only slightly affects
symmetry in terms of bytes (e.g., from 8.7% to 9.0%) and packets (e.g. from 73% to 74%, not
shown here), since packets carrying TCP signaling flags are a minor fraction of the total TCP
packets and typically carry no data (see Table 2).

Figure 2a also suggests that the degree of routing symmetry radically decreases as we move
toward the core of the Internet. On GigaSUNET, inside a Tier2 network close to the edge of
the Internet, most traffic we observed was routed symmetrically (around 70%). The asymmetric
traffic fraction here is caused by hot-potato routing due to local peering and the underlying ring
architecture which does not guarantee shortest-path transport. One step closer to the core, on
the OptoSUNET link connecting a Tier2 to a Tier1 network, only about 10% of the observed
flows were symmetrical. On this link asymmetry can be explained by the load-balancing policy
applied on the redundant route between SUNET and NorduNet (see Section 3) as well a regional
exchange point introducing some hot-potato routing. On the two Tier1 ISP backbone links, hot-
potato routing and other peering artifacts in aggregation induce high asymmetry: only 4-5% of
tuples generate traffic routed symmetrically.

4.2 The impact of observation intervals
The observation interval used for the analysis impacts flow, and thus symmetry, assessments.
Short intervals introduce border effects, such as causing short symmetric flows to seem asym-
metric if packet exchange occurs at the edge of an interval. Large intervals increase the prob-
ability of incorrectly aggregating multiple sessions with identical 5-tuples into one flow within
the interval.

To evaluate the impact of these effects, we split each traffic trace into feasible chunks6

of 1, 5, and 10-minutes, and apply FSE to filtered TCP data traffic within each observation
interval. Figure 2b shows box-plots of the FSEs, reflecting symmetrically routed traffic in
terms of tuples and bytes for each time interval (we omit packets again). Observation intervals
shorter than 10 minutes have little effect on routing symmetry estimates, which are stable (low
interquartile-range) over the entire dataset samples (six 10-minute samples across one month

5Boxes represent median, lower and upper quartile, plus whiskers and outliers.
6intervals >10min on large backbone traces may exhaust memory (e.g. 10min of SanJose0807: 2.7GB for 23M

flows).
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TCP-data traffic % of tuples % of packets % of bytes
10-min samples flow IPpair flow IPpair flow IPpair

GigaSUNET
06-04 69.4 79.4 73.6 73.7 73.9 73.9
06-11 72.3 77.9 78.1 78.1 77.9 77.9

OptoSUNET
09-01 10.1 10.7 25.3 25.4 33.8 33.9
09-02 10.9 11.7 24.5 24.6 34.7 34.8

Eq-Chicago
08-04 4.0 3.3 9.0 10.3 9.6 11.6
08-05 5.5 5.2 9.9 11.8 9.0 11.7

Eq-SanJose
08-07 4.1 3.5 9.3 11.8 11.0 13.8
08-08 3.6 4.2 10.7 14.0 12.7 16.3

Figure 3: Mean FSEs computed by considering TCP data traffic exchanged between 2-tuples (IPpairs) and 5-
tuples (TCP flows), and how this aggregation granularity affects FSEs. Higher symmetry values in the IPpairs
follow from the fact that the method counts all traffic generated by two 5-tuples with the same source and des-
tination IP as symmetric even if only one 5-tuple is actually observed as symmetric. In fact, the total number
of packets (bytes) remains unchanged regardless of granularity. In terms of tuples, traffic granularity affects the
degree of symmetry, depending on the fraction of flows that share the IP pairs.

Original TCP connections 

FSE filter 

Validation filter 

Bias of FSE filter 

TCP Signaling  
(SYN,FIN,RST) 

TCP Data  
(ACK only) 

TCP Conn.  
separator 

Figure 4: FSE removes purely signaling and scanning packets prior to flow creation. The validation method
filters out TCP background radiation by retaining only connections with at least one non-signaling packet.

for SUNET data, and within one continuous hour for Equinix data). Moreover, we observe that
the symmetry estimate computed on TCP data traffic remains stable on each location over time
(comparing FSEs of data samples separated by seven months for GigaSUNET, two months for
the other locations), and this observation also holds for all IP traffic as well as for all TCP traffic
(not shown).

In recent work [17], Lee and Brownlee studied traces measured during 24 hours on the
network boundary of the University of Auckland in 2006, and showed that around 98% flows
last less than 10 minutes. In the rest of this paper we will consider 10-minute samples, which
minimize border effects but represents a meaningful statistical data sample.

4.3 The impact of traffic granularity

In this subsection we compare routing symmetry between two levels of traffic granularity: IP
pairs, more relevant to routing questions [2]; and flows, more relevant to traffic analysis and
classification techniques [7, 8, 9].
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Figure 3 lists the mean values of the FSE metric calculated for 10-minute observation in-
tervals of TCP data traffic. In terms of packets and bytes, IP pairs (which have higher levels
of aggregation) often exhibit higher symmetry, indicating that flows between the same IP pairs
may follow different paths.

5 Validation

This section validates our FSE metric against an approach using explicit TCP flags to distin-
guish bidirectional sessions, as described in John et al. [5]. The validation method considers
TCP traffic in both directions, inspecting TCP-signaling flags (SYN, FIN, RST) to distinguish
TCP flows. We define the percentage of symmetric 5-tuples as the fraction of connections with
at least one packet for each direction. The amount of packets (bytes) carried by symmetric
tuples yields packet- (byte-)symmetry. This flow definition classifies scanning behavior that
re-uses 5-tuples as a series of 1-SYN-packet flows, while many common timeout-based flow
definitions [11, 12] (often used as input for traffic classification tools [8, 9]), will label it as a
single flow with multiple SYN packets. Figure 4 outlines the difference between FSE and the
validation method applied to original TCP connections. The validation method filters out TCP
background radiation by retaining only connections with at least one non-signaling packet. FSE
filters out all signaling packets prior to flow creation. The filter discards scanning traffic, reduc-
ing the size of legitimate TCP sessions by its signaling packets and the respective header data.

Validation performed on a smaller validation dataset of one 10-minute interval from each
dataset in Table 1 revealed that the interval-based flow definition as applied in FSE led to sig-
nificant underestimation (between 14% and 31%) of the number of TCP connections. This
underestimation derives from our aggregation of TCP connections into one flow if the exact
five-tuple is re-used within the timeout interval. However, when considering (filtered) TCP data
traffic, the underestimation is much slighter, 0.15%-0.45%. Table 3 shows the small impact
of the FSE filter on symmetry assessments. These results indicate that legitimate TCP traffic
(i.e. connections including SYN packets, data packets and RST/FIN termination), in contrast
to TCP background radiation (often consisting of one signaling packet like SYN only), rarely
reuses the same five-tuple for connections within 10 minutes, which demonstrates the utility
of the proposed traffic filter. This fact further suggests that FSE is robust against varying flow
definitions (i.e., timeout-based vs. signaling-based), at least for intervals less than 10 minutes.

In terms of packets and bytes, the validation shows that their absolute numbers are slightly
higher than FSE estimated, since FSE aggressively discards signaling packets (see Figure 4).
Table 4 shows this discrepancy during a ten-minute interval. On the complete validation dataset,
FSE removed 1-7% of TCP packets, corresponding to 0.1-0.6% of bytes, before computing its
symmetry estimates. However, this bias in absolute numbers has negligible effect on corre-
sponding symmetry estimates, which shows the validity of the estimation.

Using the validation method to characterize background radiation in the datasets (quantified
in Table 2), we can confirm that in our data background radiation is indeed mostly asymmetric:
it is mainly composed of 1-pkt flows. Between 85% and 95% of the discarded connections are
1-SYN-pkt flows. Verification of the number of ICMP destination unreachable packets shows
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10-min sample
TCP all TCP data

F (%) V (%) F (%) V (%)

GigaSUNET
2006-04 48.9 41.9 65.8 64.7
2006-11 55.8 42.0 74.1 73.9

OptoSUNET
2009-01 8.0 6.8 9.7 9.7
2009-02 9.5 7.8 12.9 12.8

Eq-Chicago
2008-04 3.5 3.0 3.9 3.9
2008-05 4.7 4.0 5.6 5.5

Eq-SanJose
2008-07 3.3 3.0 4.2 4.2
2008-08 3.2 3.0 3.7 3.7

Table 3: Flow level symmetry by FSE (F) vs. validation method (V) for all TCP [left] and TCP data [right]
traffic. Flow symmetry differs greatly for all TCP traffic, but negligibly for TCP data traffic. Thus, TCP data traffic
is robust against the different flow definitions (timeout vs flags).

Eq-Chicago 2008-05
Packets

Sym. Tot. Sym.%

V 47.2M 469.8M 10.05%
F 45.7M 455.5M 10.04%

Diff. 1.5M 14.3M

Bytes
Sym. Tot. Sym.%

V 39.4G 433.6G 9.09%
F 39.3G 432.5 9.09%

Diff. 0.1GB 1.1G

Table 4: FSE (F) vs. validation method (V). A small bias is introduced by the FSE TCP-data filter when
discarding signaling packets. However, symmetry estimates are hardly affected.

that no more than 15% of the 1-SYN-pkt TCP flows receive ICMP packets in response. If we did
not remove these sources of strong bias from the symmetry estimate, even exclusive access links
(100% symmetric) could be erroneously perceived as having substantial routing asymmetry.

To further validate our estimation method, we collected two samples of 10min traffic on the
100Mb/s single access link which connects the edge router of the University of Brescia to the
Internet [18]. Traffic that flows on this link is 100% symmetric, i.e. all outgoing and incoming
packets follow this link, so this data can serve as ground truth to assess the effectiveness of the
FSE mechanism. Estimating flow symmetry based on all IP traffic on the link resulted in an FSE
of only 79%. Considering TCP traffic resulted in an FSE of 84%, which is closer to ground truth
(100%) but still a significant underestimation. However, when assessing routing symmetry on
our proposed category of TCP data traffic, FSE for flows resulted in >98%, and almost 100% of
bytes and packets (>99.99%). The remaining underestimation of <2% of flows, which the FSE
erroneously classified as asymmetric, can be attributed to border effects due to the observation
interval: connections established/terminated just before/after the interval, which happen to send
only one data packet within the interval, appear as asymmetric flows. Since this link carries
relatively little P2P traffic (around 10%) [18], thus also little P2P signaling traffic (1-pkt UDP
flows) [13], we believe that the positive effect of the TCP data filter could be even stronger for
other links with more inherently asymmetric traffic.
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6 Summary and Conclusions

In order to shed light on the assumption of routing symmetry often embedded into traffic analy-
sis and classification methods, we provided insight into symmetric routing on a flow granularity
using observations from a variety of Internet links. We do so by proposing a simple flow-based
symmetry estimation method, FSE, providing a normalized metric allowing to assess and com-
pare routing symmetry of links on flow level. We provide an open source tool implementing the
proposed method, and apply it to a heterogeneous dataset, resulting in valuable reference data
points on routing symmetry.

We designed FSE to leverage available tools providing traditional, timeout-based 5-tuple
flows (e.g. CoralFlow). Since TCP is an inherently bidirectional protocol and still the dominant
protocol carrying traffic on today’s observable Internet, we established a TCP-based metric. We
filtered out the inherently asymmetric TCP traffic (TCP background radiation), leaving only
TCP packets without signaling flags. This process allows for fair comparison of symmetry
across links with substantially different traffic decomposition.

We did use TCP signaling flags to validate our simplified metric against ground truth mea-
surements, allowing us to demonstrate that our flow-based symmetry estimate (FSE) is robust
against multiple flow definitions. We quantified the small bias of the filter and confirmed that
most of the filtered nonproductive flows are asymmetric, carrying one packet only.

We also found that in the data we examined, spanning over four years, four measurement lo-
cations on two continents, 5-tuples carrying legitimate TCP data traffic are rarely reused within
ten-minutes observation intervals. Shorter observation intervals do not significantly alter sym-
metry estimates. Aggregating traffic by IP pairs instead of flows often results in greater sym-
metry. Unsurprisingly, routing-based symmetry seems to be stable over hours and even months,
and decreases as one moves from edge links to highly aggregated backbone, which also hinders
examination of complete, bidirectional flows on a single link. This result implies that traffic
analysis tools and methods should assume little routing symmetry unless intended only for stub
access links with no path diversity.
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1 Introduction

It is still an accepted assumption that Internet traffic is dominated by TCP, as reported by e.g.

Fomenkov et al. in 2004 [1], John and Tafvelin in 2007 [2] and continuously by Internet2 [3].

However, the rise of new streaming applications [4] such as IPTV (PPStream, PPLive) and

new P2P protocols (e.g. uTP [5]) that try to avoid traffic shaping techniques (such as RST

packet injection) will increase the use of UDP as a transport protocol. Since UDP lacks any

functionality to adapt to network traffic congestion, a substantial increase in UDP usage might

raise serious concerns about fairness and stability in the Internet.

The goal of this paper is to track the usage of UDP and shed light on the assumption that

TCP is still the dominant transport protocol on the Internet. We evaluate the fraction of UDP

traffic, in terms of flows, packets and bytes, on traces collected in the period 2002-2009 on

several backbone links located in the US and Sweden. According to our data, the use of UDP

as a transport protocol has gained popularity recently, especially in terms of number of flows.

Our preliminary analysis suggests that most UDP flows use random high ports and carry few

packets and little content (payload), consistent with its use as a signaling protocol for increas-

ingly popular P2P applications [6]. Many such applications build overlay networks to exchange

information about how to share specific (and typically large) files. UDP allows efficient es-

tablishment and maintenance of such an overlay network, while use of random ports evades

detection by port-based traffic engineering or filtering techniques.

2 Datasets

For this study we analyzed packet-header traces from backbone links in the United States and

in Sweden. The data from Sweden was collected on an OC192 link inside the GigaSUNET net-

work during 2006, and on an OC192 connection link of the current OptoSUNET network. Traf-

fic data from GigaSUNET includes 40min (2x20min) collected in April and another 2x20min

in November 2006, summing up to 9M flows carrying 422M IP packets and 294GB of data.

Two samples of 20-minute each were also collected from OptoSUNET in January and February
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2009, and include 41M flows, 1100M packets and 657GB of data [7]. Note that the Opto-

SUNET data include a substantial portion of traffic on UDP port 53, due to the presence of

a RIPE DNS server located inside SUNET, serving over 400 zones. Traffic coming from and

going to port 53 on this server cannot be considered native SUNET traffic and we filtered it out

for this study.

The data from the US was collected on an OC48 peering link for a large ISP and on an

OC192 backbone link. Two 60-minute traces were collected on the OC48 link, one in August

2002 and one in January 2003. The OC48 traces include 105M flows, 1834M packets and

1105GB of data. Traces from the OC192 link are also 60-minute long samples, one collected

in April 2008 and another one in February 2009, and consist of 379M flows, carrying 8434M

packets and 4446GB of data in total [8].

3 Methodology

We used CoralReef [9] to extract unidirectional UDP flows from our traces. Each flow record,

defined by the five-tuple (source and destination IP, port numbers and protocol), includes the

counts of packets and bytes exchanged. The flows are further discriminated by a 5-minute time-

out interval, i.e., two packets sharing the same tuple belong to the same flow if their timestamps

are within the given time interval. Since unidirectional UDP flow information does not allow

us to infer if the specific flow is client-to-server (i.e., request) or server-to-client (i.e., response)

traffic, we use a simple heuristic to choose the port number for the port-based analysis. We take

advantage of the fact that well-known and common server applications are assigned to low port

numbers (<1024), and many operating systems use the high end of the port range as ephemeral

ports for dynamically assigned source port numbers1. We therefore consider the lower of the

two port numbers within a flow 5-tuple for our port-based analysis, which is most likely to be

the destination (i.e., server) port number.

4 Analysis of UDP traffic

In Table 1 we report the ratio between UDP and TCP traffic, in terms of packet numbers, traffic

volume (bytes) and flow numbers. For each of the backbone measurement locations, we can

observe that the use of UDP as a transport protocol has increased through the years. While TCP

sessions are still responsible for most packets and bytes transferred, UDP dominates after 2003

in terms of flows: on OptoSUNET (2009) we observe 3x as many UDP flows as TCP flows.

4.1 Port number analysis

To investigate the nature of the UDP traffic, we first took flows from the top ten port numbers

in terms of flows for the most recent data (2008 and 2009) and plotted their average flow sizes

1IANA suggests ports 49152-65535 as dynamic ports, which is followed by newer Windows based Systems.

Linux uses an ephemeral port range of 32768-61000 by default.
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Trace Sample
UDP/TCP Ratio

packets bytes flows

CAIDA-OC48
08-2002 0.11 0.03 0.11

01-2003 0.12 0.05 0.27

CAIDA-OC192
04-2008 0.14 0.05 1.43

02-2009 0.19 0.07 2.34

GigaSUNET
04-2006 0.06 0.02 1.06

11-2006 0.08 0.03 1.45

OptoSUNET
01-2009 0.21 0.11 3.09

02-2009 0.20 0.11 2.63

Table 1: UDP/TCP ratio in terms of packets, traffic volume (bytes) and flow numbers on our

datasets.
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Figure 1: Top ten UDP ports in terms of flows numbers. Port numbers (x-axis) are plotted in

log-scale.

in terms of packets and bytes (Figure 1). On the backbone links in Sweden and the US, flows of

the ten top-ranked ports generally carry fewer than 8 packets which sum up to less than 1KB on

average. This suggests usage of UDP mainly for small (signaling) flows. According to a port-

based classification, the top flows include the traditional UDP applications DNS (53) and NTP

(123). Other top port numbers are ports used for applications with known vulnerabilities, such

as port 137 (Netbios) and port 1434 (MSSQL) [10]. Flows to these port numbers are therefore

likely to be anomalous and unsolicited traffic. The majority of the top-used ports in terms of

UDP flows, however, are the ones normally used by P2P applications, such as 4672 and 4665

(eDonkey), 6881 and 32459 (BitTorrent), 6346 (Gnutella), 4672 (eMule) and 6257 (WinMX).

On the CAIDA traces from 2008, we can observe three outliers in Figure 1b. These outliers

are caused by traffic on the UDP port numbers 1026, 1027 and 1028, which we believe can be
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attributed to anomalous activities directed to the Windows Messenger Service2 [11]. The UDP

traffic on these ports is exchanged between large numbers of IP addresses, but a major part of

the data is destined to few IPs, which differ for each specific port. We also noticed that the

packet lengths in these flows are consistently 1106 bytes. Based on these observations, together

with the knowledge of previously observed anomalies of this kind [12], we speculate that a

burst of Messenger Spam (probably with spoofed source IP addresses) during trace collection

is responsible for the outliers.

To give a complete overview of UDP port number usage, we plotted the Cumulative Distri-

bution Functions (CDF) of UDP traffic in terms of flow numbers and traffic volume (in bytes)

over the complete port range for each measurement location (Figures 2a and 2b). For the 2002-

2003 traces, more than 50% of the UDP flows use ports below 1024, i.e., mainly traditional

UDP services such as DNS (port 53), NTP (port 123) and NetBios (port 137). In the more

recent traces from our measurement locations, usage of ephemeral ports (>1024) has become

prevalent. Virtually all UDP ports are used, and in modern backbone traffic around 80-90% of

the UDP flows use ports >1024 (Figure 2a). Observable steps in the CDFs are at port 53 (DNS)

and 6881 (BitTorrent).

In term of traffic volumes, more than 95% of the UDP bytes are carried on higher ports

numbers for all recent traces (2008, 2009), as illustrated in Figure 2b. Observable steps in

the CDFs are at port 53 (DNS) and at port 6970 (Real Time Protocol, RTP). Furthermore,

substantial numbers of traffic in the CAIDA data of 2003 trough 2009 are carried on UDP port

1457. The traffic on UDP port 1457 was in the traces from these three years generated by a

small number of IP addresses, exchanging large data amounts with between two and ten servers

on port 1457. We cannot infer the exact application, however, we do not consider this traffic

representative due to the low number of hosts involved.

4.2 Flow size analysis

The results of the port-based analysis give us reason to speculate that the flows running on

ephemeral ports can to a large degree be attributed to P2P overlay signaling traffic rather than

to actual data transfers. To get more insight, we plotted CDFs of the flow sizes up to 1K for

the 2008 and 2009 data traces (Figure 3). Our backbone traces show basically similar major

steps: between 120 and 130 bytes, and between 300 and 310 bytes, most of these flows (>

90%) carrying one packet only. We looked at dominating port numbers in these flow ranges,

and found many known P2P port numbers, esp. for BitTorrent (6881 and 32459).

To verify common UDP flow sizes of popular P2P applications, we complemented our back-

bone data with measurements of P2P traffic in a controlled lab environment3. The BitTorrent

and eDonkey sessions collected on our lab computer confirmed that most UDP traffic generated

by a popular P2P clients (uTorrent, eMule) falls in the observed byte ranges. The BitTorrent

2A vulnerability in the Windows Messenger Service on old, unpatched Windows Systems, typically on UDP

ports 1026 et seq., is e.g., used for unsolicited advertisement of so called Windows Messenger Spam
3We installed uTorrent (a BitTorrent client) and eMule (an eDonkey client) on a WindowsXP PC. With the help

of Proxocket (a dll proxy which allows to capture packets sent/received by a specific application) we collected

UDP traffic generated by BitTorrent and eDonkey while downloading a Linux distribution from several peers.
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Figure 3: CDF of UDP flow sizes in byte.

ping and find_node Distributed Hash Table (DHT) queries with IP packet lengths of around

95 bytes (ping probes and responses), 125 bytes (find_node queries) and 300 bytes (find_node

responses) [13]; and eDonkey UDP queries with comparable lengths.

We therefore believe that the main steps for backbone traces observable in Figure 3 are an

artifact of P2P DHT signaling traffic (request and responses), which is a further indication that

P2P signaling traffic is indeed responsible for a majority of the UDP flows on the observed

backbone links. In Figure 3 we can also observe that about 80% of the flows in the traces from

2008/2009 carry less than 300 bytes. For the backbone data, only 2% of the UDP flows are

larger than 1KB, and 0.01% are larger than 10KB, which explains the discrepancy in UDP/TCP

ration between flow numbers and traffic volumes, as presented in Table 1.

5 Summary and Conclusions

We investigated UDP traffic in several traffic traces collected from different networks and geo-

graphical locations, at different times. We have found that TCP still dominates in terms of pack-

ets and bytes, but UDP is responsible for the largest fraction of flows in our most recent traces.

A port-based analysis suggests that the increase in UDP flows in our data stems mainly from

P2P applications using UDP for their overlay signaling traffic (e.g., DHT queries/responses).

This development may again change with the advent of IPTV and UDP based P2P appli-

cations, which not only signal, but also transport large datagrams via UDP [4, 5]. We will

continue to monitor available data to track trends in UDP usage, and specifically seek data from

China where UDP-based IPTV traffic is already common according to anecdotic reports [14].
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The effect of increasing fractions of UDP traffic on network stability depends on the congestion

control abilities of the applications utilizing UDP as main transport protocol (e.g. uTP [5]). The

increasing trend of UDP therefore needs to be monitored closely in order to keep track of these

effects.

Finally, we note that precise traffic classification requires methods beyond simple port clas-

sification. Most current traffic classification techniques focus on TCP [15, 16], with only pre-

liminary examination of techniques for UDP traffic [17] (other than signature-based deep packet

inspection). Given the growing evidence for the use of UDP for increasingly popular applica-

tions, we conclude that traffic analysis methods must evolve to be able to accurately classify

UDP traffic.
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Abstract 
Contemporary backbone-traffic is analyzed with respect to behaviour differences between 
inbound and outbound Internet traffic. For the analysis, 146 traffic traces of 20 minutes 
duration have been collected in April 2006, carrying 10.7 billion frames and 7.5 TB of data. 
Significant directional differences, among others found in IP fragmentation, TCP termination 
behaviour and TCP options usage, are pointed out and discussed on different protocol levels 
(IP, TCP and UDP). The analysis includes a focus on TCP connection properties, yielding 
P2P and malicious traffic as main reasons for the differences. The results are relevant for a 
better understanding of how applied network protocols are used in an operative environment. 
Furthermore, a quantification of malicious traffic provides related research fields, such as 
network security or intrusion detection, with important insights. 

Keywords 
Internet Measurement; Directional Traffic Differences; TCP Connection Analysis; Network 
Anomalies; 

1. Introduction 
The Internet, as emerging key component for commercial and personal communication, has 
in the recent years undergone a fast development and is still expanding. Unfortunately, this 
rapid development has left little time or resources to integrate measurement and analysis 
possibilities into Internet infrastructure, applications and protocols. However, the Internet 
community needs to understand the nature of Internet traffic in order to support research and 
further development [3]. One way to acquire better understanding is to measure real Internet 
traffic. In the MonNet project [10][24], the technical and legal complications of the 
measurement task were overcome and resulted in packet-level data traces of contemporary 
Internet traffic.  
The MonNet traffic traces analyzed in this article have been taken from the OC192 backbone 
of the Swedish University Network (SUNET) during 20 days in April 2006. The links tapped 
provide not only a backbone for two major Universities, but also for a substantial number of 
student dormitories and research institutes. Additionally, the links carry exchange traffic with 
commercial providers due to a local exchange point inside Göteborg. Because of the high 
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aggregation of the measured links, we believe that this recent data provides a valid footprint 
of Internet traffic characteristics in Sweden at the current time.  
The chosen measurement point on the outermost part of a ring architecture makes the traces 
specifically suitable for highlighting directional differences. Put simply, the measurements 
were taken on links between the region of Göteborg and the rest of the Internet. This work 
therefore analyzes the contemporary data with respect to behaviour differences between  
in- and outbound backbone traffic. The presented traffic constitutes a medium level of 
aggregation, between campus-wide traffic and tier-1 backbone traffic. We believe that this 
type of network, with smaller local exchange points, represents an upcoming class  
of networks.  

1.1. Related work 
There are numerous articles about general Internet measurements [7][16][25], with only a 
few of them partly dealing with directional differences. Thompson [25] e.g. presented wide-
area Internet traffic characteristics on nowadays rather outdated data in 1997. The data was 
recorded on a core-backbone and a transatlantic link, including figures about directional 
differences in packet sizes and byte volumes. 
In recent years, a few studies included discussions about directional differences, but typically 
only regarding specific properties. These articles are often based on unidirectional flow data 
and analyze a variety of datasets. The analyzed datasets are either collected at Tier-1 
backbone level or on small campus or institute Internet gateways, so with either a low or very 
high level of aggregation. In his article about rapid model parameterization, Lan [14] showed 
differences between inbound and outbound traffic in terms of protocol mix and flow 
statistics, like flow size and duration. The data was recorded on the 100 Mbit/s Internet 
gateway of the USC Information Science Institute in 2001. Saroiu [22] analyzed different 
types of HTTP flows, recorded on two border routers of the University of Washington on 9 
days in 2002. In this paper, WWW and P2P traffic carried over HTTP are contrasted, 
including a comparison of inbound and outbound flows. In his study about P2P properties in 
2003, Gerber [8] was able to show that the IN/OUT traffic balance for P2P traffic on the 
border of a Tier-1 backbone is close to one. Kim [12] compared inbound and outbound flow 
statistics for different transport protocols, including flow, packet and byte ratios. The analysis 
was based on flow data collected in 2004 on the Internet routers of the POSTECH campus, a 
2x100 Mbits/s Ethernet.  
An interesting study based on packet-level traces was presented by Mellia [17]. Mellia 
analyzed traces collected on the Internet access link of the Politecnico di Torino campus 
LAN in 2000-2002. Besides presenting an automatic tool for statistical analysis of network 
traces, interesting results for IP and TCP characteristics are given, including a connection-
level analysis of TCP.  
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1.2. Contribution of this work 
Updated measurement results are crucial for a better understanding of how the applied 
technologies and protocols are used in an operative environment. In the present study, 
significant directional differences are pointed out and discussed on different protocol levels 
(IP, TCP and UDP). For TCP, the bi-direction packet level traces are reassembled to 
connections, in order to be able to conduct a detailed connection-level analysis. The 
presented results are destined for network engineers, network application developers and 
protocol designers in order to be able to optimize bandwidth efficiency and stability of future 
networks. The paper furthermore highlights network anomalies and inconsistencies, like 
attacking or scanning traffic.  This is important knowledge, since improving the robustness of 
network applications and protocol implementations is gaining special importance. In fact, 
increasing bandwidth and growing numbers of Internet users have also lead to increased 
misuse and anomalous behaviour [9][13]. Knowledge of real-life traffic properties is also 
important for establishing more realistic simulation models [6]. Finally, some of the insights 
might as well bring up new research issues in related research fields, such as network 
security and intrusion detection. The contributions of this work are relevant, because: 
 

• the analysis is based on updated, contemporary data 
• the data was collected on links representing medium traffic aggregation, a class of 

networks not previously studied in the same extent 
• packet-level traces allow a more detailed analysis than sampled flow-level data (e.g. TCP 

options) 
• the presented bi-directional TCP connection analysis reflects real connections more 

closely than traditional flow level analysis 
• the results provide a complete view of directional differences on different levels (IP, TCP, 

UDP)  
• the special focus on network anomalies is especially important in the light of increasing 

amounts of network attacks 
 

The paper is outlined as follows. Section 2 describes the methodology of collecting, pre-
processing and analyzing the traces. Then some general traffic properties are presented in 
section 3. Next, sections 4, 5 and  6 quantify directional differences observed on different 
protocols levels (IP, TCP and UDP). Finally, in section 7, different traffic anomalies and 
inconsistencies found on the protocol levels are summarized, followed by concluding 
remarks about the main findings. 

2. Methodology 

2.1. Collection of traces 
We collected our traces on the outermost part of an SDH ring running Packet over SONET 
(PoS). The traffic passing the ring to (outbound) and from (inbound) the main Internet is 
primarily routed via our tapped link, as confirmed by SNMP statistics. Simplified, we regard 

DIFFERENCES BETWEEN IN- AND OUTBOUND INTERNET BACKBONE... 171



 

the measurements to be taken on links between the region of Göteborg, including exchange 
traffic with the regional access point, and the rest of the Internet as discussed earlier in 
section 1. 
We use optical splitters on two OC-192 links, one for each direction. The splitters are 
attached to two Endace DAG6.2SE cards sitting in identical Dual-Opteron servers. The 
servers use a 6 disk SCSI Raid0 to keep up with the speed of the 10 Gbit/s links. The DAG 
cards are configured to capture the first 120 bytes of each frame to ensure that the entire 
network- and transport header information is preserved. The two DAG cards are chained 
together with help of the DAG Universal Clock Kit (DUCK), with one card serving as 
synchronisation input for the second card, resulting in time synchronisation typically between 
± 30ns [5]. 
The collection of the data was performed between the 7th of April, 10:00 and the 26th of 
April 2006, 10:20. During this period, we simultaneously for both directions collected four 
traces of 20 minutes each day at identical times. The times (02:00, 10:00, 14:00 and 20:00) 
were chosen to cover business, non-business as well as night time hours. Due to 
measurement errors in one direction at four occasions we have excluded these traces and the 
corresponding traces in the opposite direction. 

2.2. Processing and analysis 
After storing the data on disk, the payload beyond transport layer was removed and the traces 
were sanitized and desensitized. This was mainly done by using available tools like Endace's 
dagtools and CAIDA's CoralReef, accompanied by own tools for additional consistency 
checks, which have been applied after each pre-processing step to ensure sanity of the traces. 
Trace sanitization refers to the process of checking and ensuring that the collected traces are 
free from logical inconsistencies and are suitable for further analysis. During our capturing 
sessions, the DAG cards discarded a total of 20 frames within 12 different traces due to 
receiver errors, which includes HDLC CRC errors. Surprisingly, another 71 frames within 30 
different traces had to be discarded after the sanitization process due to IP checksum errors.  
By desensitization we mean the removing of all sensitive information to ensure privacy and 
confidentiality. The payload of the packets was removed earlier, so we finally anonymized IP 
addresses using the prefix preserving CryptoPAN [27].  After desensitization, the traces were 
moved to a central storage server. First, an analysis program was run on each trace to extract 
cumulated statistical data. As a second step, per-connection TCP analysis was conducted on 
merged, then bidirectional traces. More details on the connection analysis are described in 
beginning of section 5. 

3. General traffic characteristics 
As summarized in table 1, the 146 analyzed traces sum up to 10.68 billion PoS frames, 
containing a total of 7.53 TB of data. In his study on campus wide traffic, Kim [12] reported 
about a 1:1 ratio between outbound and inbound traffic for packets numbers, but an 1:1.38 
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inequality for traffic volume due to the “net provider” status of University networks. In the 
our data, no significant difference between neither, packet counts nor volumes, can be 
observed. This even distribution of traffic proves the higher level of aggregation and 
underlines the relevance of the presented data, representing Internet backbone traffic. 
The frames contain in 99.97% of the cases IPv4 packets, which sum up to 99.99% of the 
carried data. The remaining traffic consists constantly of around 1200 IPv6 BGP Multicast 
messages, 8 CLNP routing updates (IS-IS) and 1 Cisco Discovery Protocol (CDP) message 
per minute. The results in the remainder of this paper are based on the IPv4 traffic only. 

     
 

4. IP level 
In this section out- and inbound traffic on the network layer level of the Internet Protocol (IP) 
is compared.  This comparison includes the transport protocol mix, IP packet size distribution 
and IP fragmentation.  
To start with, table 2 gives some scale to the aggregation level of the links. The numbers of 
distinct IP hosts seen within (inside) and outside the region of Göteborg are summarized, 
where outbound sources and inbound destinations are regarded as inside, and the opposite 
way around as outside. Note that the sum of the numbers exceeds the total numbers, since 
one host can obviously be both source and destination for packets of several transport 
protocols. As expected, the amount of hosts inside the region is outnumbered by hosts seen 
outside “in the Internet”. Nevertheless, there is a surprisingly high number of hosts inside, 
considering that the numbers of hosts at the three main customers of the links (2 major 
universities and the regional network for student dormitories) do not exceed 7,000 each. 
Indeed, these main customers sum up to about 21,000 sources of outbound TCP connections. 
The remaining 150,000 outbound sources belong to different providers connected to the 
exchange point. The amount of inbound destinations is much larger due to incoming 
scanning traffic. As an example, the 16 bit address ranges of the two Universities are scanned 
in their entirety (2x65,534). The vast amount of UDP hosts outside was found to be due to 
short UDP sessions caused by P2P overlay networks, which will be discussed in more 
detailed in section 6. 
It has to be noted that even though the hosts of the three main customers represent a minor 
part (13%) of the observed IP addresses inside the region of Göteborg, a majority of the 
traffic (around 85%) consists of packets to or from these hosts. 

Table 1: Distinct IP addresses seen 

 

: UDP Burst 

Protocol Breakdown  

Table 2: Traffic amount of data captured 
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4.1. Transport protocol breakdown 
The protocol breakdown, summarized in table 3, once more confirms the dominance of TCP 
traffic. Compared to earlier measurements [7][16][23][25], the fractions of both TCP data 
volume and packet counts have even increased slightly. In the table, fractions of packets and 
data carried in the respective protocol are in % of total IPv4 traffic for the corresponding 
direction. Ratios between out- and inbound traffic are shown in parentheses, summing up to 
100 for each protocol.  
TCP packets and data show an equal ratio, as it was the case for the total traffic. In Kim’s 
report [12], outbound traffic carried 1.44 times more data than inbound traffic. We believe 
that this behaviour is not observed in our data since the traffic of diverse network types 
aggregating on the links measured cancel out the typical client-server imbalance (small 
requests, large data replies). UDP data on the other hand shows almost the same ratio (38:62) 
in favour of inbound data volumes in our data as previously reported by Kim.  This is caused 
by multimedia traffic (mainly RTP) over UDP, which is more common to be served on hosts 
on the Internet. An interesting observation can be made for UDP packets, with an unexpected 
large amount of outgoing packets. A closer look reveals that three consecutive measurements 
carried up to 58% UDP packets, as shown in table 4. This indicates a potential single UDP 
burst of 14-24 hours of time. A detailed analysis shows that the packet length for the UDP 
packets causing the burst was just 29 bytes, leaving a single byte for UDP payload data. 
These packets were transmitted between a single sender and receiver address with varying 
port numbers. After reporting this network anomaly, the network support group of a 
University could identify the culprit host. This was a web server that had been exploited 
through a known vulnerability in a PHP script. Consequently, a UDP DoS script was 
installed and could run undetected, since the network management tool was monitoring 
amount of per-flow data only, but not the number of packets.  Although TCP data was still 
predominant, we believe that a dominance of UDP packets over such a time span could 
potentially lead to TCP starvation and raise serious concerns about Internet stability and 
fairness. When removing the three traces with this outstanding network event from our data, 
UDP packets showed the same ratio as the TCP and the overall data. Due to the small packet 
sizes, the ration of UDP data kept almost unchanged (36:64). 
ESP traffic seems to experience a typical client-server pattern with even packet ratio, but 
uneven data proportions. The hosts mainly responsible for this type of traffic will be 
discussed again in section 4.3. An explanation for the dominance of outbound traffic for 
ICMP could be the large amount of incoming network attacks as shown later, triggering 
ICMP responses from routers and firewalls. 
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4.2. Packet size distribution 
While cumulative distribution of IPv4 packet sizes was reported to be trimodal in earlier 
measurements [7][16][23][25], more recent studies showed that it has changed to be rather 
bimodal [21]. The two major modes are small packet sizes just above 40 bytes (TCP 
acknowledgements) and large packets around 1500 (Ethernet MTU). The previous third 
mode of 576 bytes (default size according to RFC 879) has in our data decreased to less than 
1%. Furthermore, we found that two other notable modes appeared at 628 bytes and 1300 
bytes. In table 5 the major modes are summarized, with an extra table excluding the above 
mentioned UDP burst. As discussed in a prior study on the SUNET datasets [10], the mode at 
628 bytes is an artefact of ’TCP layer fragmentation’ applied by file sharing protocols like 
Bittorrent or DirectConnect, where 628 byte large packets  typically appear after full sized 
packets in order to add up to 2KB blocks of data. The mode at 1300 bytes could be explained 
by the recommended IP MTU for IPsec VPN tunnels [4]. 
The studies of Thompson, Kim and Mellia [12][17][25] report about directional differences 
in packets sizes on two different levels of link aggregation, both caused by the classical 
client-server pattern. In contrast, in the SUNET data the two main modes for small and large 
packets show no significant directional differences. This might be caused by two reasons:  

• since Thompson’s report of 1997, network applications have undergone some fundamental 
developments 

• compared to the campus-wide data of Kim and Mellia, our backbone data contains a 
higher aggregated traffic mix 

Directional differences however can be observed for two other packet sizes. The differences 
between fractions of 628 byte sized packets are likely to be caused by popular P2P servers 
inside Göteborg’s student network. It is well known that DirectConnect, but also Bittorrent 
are especially popular in Sweden, and consequently also in the region of Göteborg. The cause 

Table 3: Protocol mix (ratios per protocol in parenthesis) Table 4: UDP burst 

Protocol Breakdown  

Table 5: Major modes of IPv4 packet size distribution for all data (left) and without 
UDP burst (right) 

: UDP Burst 

Protocol Breakdown  
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for the difference in the default datagram size of 576 bytes is not obvious, but we think it 
might be caused by a better utilization of the Path MTU discovery feature in the comparable 
well configured hosts inside University and student networks. 

4.3. IP fragmentation 
Earlier studies of McCreary and Shannon [16][23] indicated an increase in the fraction of IP 
packets carrying fragmented traffic of to up to 0.67%. We found a much smaller fraction of 
only 0.065% of fragmented traffic in the analyzed data, as shown in table 6. It can be noted 
that 72% of the fragmented traffic in our data is transmitted during office hours, at 10AM and 
2PM. While Shannon, analyzing data of three different locations in 2001, found that 
fragmented data was equally distributed between out-and inbound data, the amount of 
fragmented traffic on the SUNET inbound link is about 9 times higher than on the outbound 
one. Where UDP and TCP is responsible for 97% and 3% respectively of all incoming 
fragmented segments, they just represent 19% and 18% of the outgoing. The remaining 63% 
outgoing fragmented traffic turned out to be IPsec ESP traffic (RFC 4303) between exactly 
one source and one receiver at working hours on weekdays. Each fragment series in this 
connection consists of one full length Ethernet MTU and one additional 72 bytes fragment. 
This could easily be explained by an unsuitably configured host/VPN combination 
transmitting 1532 byte (1572-40 byte additional IP and TCP header) instead of the Ethernet 
MTU due to the additional ESP header. The dominance of UDP among fragmented traffic is 
not surprising since Path MTU Discovery is a TCP feature only. 
 

 
 

 
The first approach to explain the differences is based on the fact that the probability for a 
packet to be fragmented is increasing with each hop. According to a TTL analysis of the 
fragmented traffic, the average hop count for outbound traffic was 6.77, whereas the average 
hop count for inbound traffic was 9.43. This alone does not seem to be significant enough to 
explain the imbalance between inbound and outbound fragments. We believe that another 
possible explanation could again be the fact that SUNET and its connection networks are 
very well configured and administered compared to Internet standards. 

5. TCP level 
In order to conduct a detailed connection level analysis on TCP, we merged the tightly 
synchronized unidirectional traces. From the resulting bidirectional traces an analysis 
program collected per-connection data,  including packet and data counts for both directions, 

Table 6: Fractions of IPv4 fragments 

: UDP Burst 

Protocol Breakdown  

176 PAPER VI



 

start- and end times, TCP flags and counters for erroneous packet headers and multiple 
occurrences of special flags like RST or FIN.  We define a connection by the classical tuple 
of IP addresses and ports for source and destination. A TCP connection starts with the 
observation of the first SYN segment and is closed by either one FIN segment for each 
direction or one RST segment. Additional SYN segments for one tuple can sometimes be 
seen in the same direction, most commonly within scanning campaigns. In this case, further 
“connections” are opened within the analysis program in order to record the pure SYN 
packets separately. The following non-pure-SYN packets are always recorded within the 
most recently opened connection. We decided not to use a timeout threshold for unclosed 
connections, since our traces are limited to 20 min duration anyhow. 
A significant part of the traffic is routed asymmetrically, due to hot-potato routing. 8% of the 
TCP data was sent via the outgoing link, without any corresponding TCP packets seen on the 
incoming. Asymmetrical traffic on the incoming link was even more common, accounting for 
20% of the observed TCP data. Knowing the prefixes of the SUNET network segments in the 
area of Göteborg, it was possible to show that around 14% of the TCP data is actual transit 
traffic with neither source nor destination being SUNET customers inside Göteborg, entering 
the links via the local exchange point. Of the transit traffic, 67% was asymmetrical traffic, 
which means that 1/3 of all asymmetrically routed traffic is transit traffic as well. 
In the following subsections, first, TCP connections are classified according to their 
connection setup and termination behaviour. Then, connection properties like packet count, 
byte size and lifetime are analyzed with respect to connection direction. Finally, TCP options 
are discussed in the rather novel approach of per-connection information for SYN requests 
and replies. 

5.1.  Connection breakdown 
The following tables summarize the connection breakdown for TCP in all 146 traces. The 
analysis database recorded a total of 72.6 Million connections according to our definition. 
Additional 8.9 million bidirectional flows do not include an initial SYN segment, which 
means that they either start before the measurement times or have asymmetrical properties. 
One million of these flows include no SYN, FIN or RST segments but show packets in both 
directions, which means that about 3.4% of the established connections last longer than 20 
minutes. However, this small number of long lasting connections carries about 34% of the 
total TCP data. This is not unexpected, given the observations of Brownlee [2], saying that 
flows longer than 15 minutes carry more than 50% of the traffic on a link. According to their 
destination port numbers, the long lasting connections typically carry traffic of different P2P 
protocols and popular messenger services. The following analysis is performed on TCP 
connections with initial SYN segments. 
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Table 7 presents the total of all TCP connections with initial SYN segments. We define 
established and rejected connections as connections experiencing a proper 3-way handshake 
or not, respectively. Outbound in this context means that the initial SYN packet was sent on 
the outbound link. Inbound consequently means that the connection establishment was 
initiated outside the region of Göteborg. The tables 8 and 9 summarize the termination 
properties for rejected and established connections. In the tables, the first line represents the 
vertically summed values for each respective column of absolute packet counts or relative 
fractions. The fractions of out- and inbound connections in relation to the total amount of 
connections are additionally given in the first line, summing up to 100% horizontally. 
Arlitt [1] quantified different TCP connection states based on the campus wide traffic 
recorded at the University of Calgary between 2003 and 2004. He quantified rejected 
connections with about 25-30% of all TCP connections. Our contemporary data includes 
much more unsuccessful connection attempts, as shown in table 7. A major difference 
between the numbers of rejected outbound and inbound initiated connections is evident in 
table 8. The large amount of unreplied SYN packets on the incoming link was already 
indicated earlier, when discussing the numbers of distinct IP addresses appearing on the 
incoming link. These are mainly attacks trying to exploit well known vulnerabilities on ports 
commonly used by Trojans. The scans often cover the entire IP ranges of the connected 
networks inside Göteborg and are likely to be destined for non existing endpoints. Entrance 
routers to the specific network typically drop this kind of packets, which explains the absence 
of response packets. In some cases an ICMP response might be triggered, which would 
explain the larger number of outgoing ICMP packets according to table 3. Regardless of the 
much higher number of incoming scans, there is also a substantial number of outgoing 
unreplied connection attempts. More than 70% of the 8.2 Million attempts are sent by hosts 
within the student network. Note that not all of these attempts are necessary network scans. 
There is a large fraction of non-malicious outbound connection attempts to non existing 
hosts, resulting in unsuccessful connection attempts. This is often observed for P2P traffic, 
where unreliable file-sharing peers are common. 

Table 7: TCP connection attempt breakdown 
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In cases where scanning attempts reach existing hosts on arbitrary port numbers, host-based 
firewalls should preferable drop the packets, but might in some cases reply immediately with 
an RST packet. This behaviour is more than twice as common for hosts in the student 
network as compared to hosts in University networks, which indicate that private Internet 
hosts are less carefully configured.  
Asymmetric traffic was included in the summary for rejected connections (table 8) for 
reasons of completeness. Naturally, asymmetric traffic can not experience a bidirectional 3-
way handshake, which means that we cannot consider this traffic as being established. 
 
 

  
 

 
In table 9 finally the 28.3 Million connections with proper 3-way handshake observed are 
split up into different termination behaviours per direction. Considering the quite even 
distribution of TCP traffic volumes (table 1) it is somewhat surprising to see around 10% 
more outbound than inbound established connections. These differences in connection counts 
are cancelled out in the high level summary by differences in connection properties, as 
presented in the next subsection. 
A major fraction (67%) of the established connections is closed properly by FIN segments in 
each direction, which seems to be quite low, considering that TCP resets should be a rare 
event according to the TCP standard (RFC 793). On the other hand, a prior study by Arlitt [1] 
highlighted that TCP connections are becoming more likely to be closed by RST segments 
(15%), mainly due to irregular web server and browser implementations. Comparing the 
behaviour of in- and outbound connection in our data we find that connections opened from 
inside Göteborg are more likely to be closed by proper FIN handshakes. This is compensated 
by a higher number of connections involving RST segments on the incoming link. While 
single RSTs in either direction can still be regarded as proper connection termination, the 
number of connections closed by FIN, followed by additional RST segments is surprisingly 
high (more than 30% on the inbound connections), even when considering Arlitts results. In 
fact, the fractions of connections closed by both FIN and RST segments sent by the client 
(the originator) are close to Arlitts numbers. (3.5% and 7.9% resp.) and are indeed mainly 
caused by web traffic. The main surprise is the large numbers of connections terminated by 
FINs and RSTs sent by the server (the responder), which are unproportionally large for 
inbound connections, meaning that they are closed by servers inside Göteborg. As main 
source of this behaviour a handful of hosts inside the student network could be identified, 

Table 9: Established connection termination breakdown 
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according to their port numbers serving different kinds of popular P2P protocols. This reset 
behaviour is probably used to reduce the CPU and memory overhead introduced by 
connections entering the TIME_WAIT state on peers [1]. 
The 3.6% of unclosed connections lies close to the fraction of long-lasting connections, 
quantified in section 5.1. These unclosed connections are indeed mainly long lasting  
flows, and consequently carry almost 50% of all data carried by established connections. 
While 50% of these unclosed, long lasting incoming connections show destination port 
numbers of popular P2P protocols, the same port numbers account only for 10% of the 
outbound connections. 
 
In addition to the high number of connections consisting of one SYN segment only, we also 
observed as many as 57 Million connections consisting of RST segments only (not shown in 
the tables). Of these single RST segments, 96% are seen on the outbound link, almost 
entirely in asymmetrical fashion, without any incoming segment triggering the resets. Only a 
handful source/destination pairs are responsible for these segments during short periods of 
time, so the first suspicion was that this could be reset attacks [26]. However, closer 
investigation showed no variations in sequence numbers or no other typical symptoms, so 
TCP reset attacks can be ruled out. We believe that the outbound link could be the return path 
for an asymmetrical routed denial of service (DoS) attack, generating the observed RST 
segments. Still, it is surprising that no similar behaviour could be observed to the same extent 
on the symmetrical routed data. 

5.2. Quantification of P2P traffic 
Since we expect P2P to have a huge impact on traffic characteristics, we tried to quantify P2P 
traffic for each direction with a simple port number analysis. Even though it is well known 
that P2P traffic is trying to hide itself and that port number methods strongly underestimate 
actual numbers [11][18], we believe that this analysis is still valid for comparing amounts of 
P2P connections between directions. 
A list of common port-numbers for popular file-sharing protocols was identified, specifically 
for different DirectConnect, Bittorrent, Edonkey and Gnutella implementations. According to 
these port-numbers,  outbound  P2P connections carry around 13% of P2P packets and data, 
while for inbound connections this fraction is about twice as large with around 25%. Note, 
that these large volumes of data are carried by a small number of connections (less than 1%). 
Beside the probably quite large underestimation of these numbers, they indicate that P2P 
traffic is in fact at least about 2 times more common among inbound connections. The high 
amount of inbound established P2P connections, as already indicated in section 5.1, could be 
the result of a number of popular P2P peers inside Göteborg. Another possible explanation 
could be an increasing use of modern P2P clients (like RevConnect) inside Göteborg, 
triggering reverse connections from peers outside, on the Internet. 
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5.3. Connection properties 
This section provides detailed information about different connection properties such as 
lifetime, size and packet count. The analysis deals only with bidirectional connections which 
have been established by a 3-way handshake. Ordering the TCP connections by data volume 
and number of packets carried shows that a small number of top connections accounts for 
most of the data and packets. This indicates the characteristically ’elephant and mice 
phenomenon’, saying that the majority of Internet data is carried by a small percentage of 
large flows, so called elephants [15][20]. More specifically, outgoing connections appear to 
have less pronounced elephants, since it needs 0.08% and 0.17% to carry 50% of the total 
amount of data and packets respectively for outgoing connections, while only 0.07% and 
0.14% are sufficient for 50% for inbound connections. This directional difference can be 
described even more clearly, considering that 3.9% of the outbound and as few as 0.9% of 
the inbound connections carry 90% of the data, and 26.3% and 12.2% respectively carry 90% 
of the packets seen in the particular direction. 
Generally, artefacts of the client-server pattern (small requests, large data replies) can be 
observed for connections established in both directions. While outbound connections yield an 
average ratio of 1:1.6 in favour for incoming data, inbound connections show a higher ratio 
of 1:1.86 in favour of outgoing data.  This means that the smaller number of inbound 
connections (around 45% of all connections) carries more data and more packets primarily in 
outgoing direction, according to the client-server pattern. This imbalance is cancelled out to 
an almost even ratio in the high-level view of sections 3 and 4. The imbalance in connections 
properties is mainly caused by the larger fraction of heavy incoming P2P connections. 
 The differences between in- and outbound connections are summarized in table 10 by means 
of statistical properties. In the table, mean, standard deviation (σ), median and 80th percentile 
(P80) are given for different connections properties per direction of the initial connection 
establishment. While mean and σ of connection lifetimes appear to be quite similar for both 
directions, the values for sizes and packet counts are significantly larger for inbound 
connections. It needs to be noted that some of the values and figures in this subsection are 
somewhat biased since the traces are limited to 20 min of duration. Long-lasting connections, 
which are likely to be elephants, are therefore not taken into account to the full extent. 
Especially the values for mean and σ can therefore to be considered as an underestimate, 
while median and P80 are less biased. 
In order to be able to better interpret median and 80th percentile, we included figures for the 
distributions of connection lifetimes, sizes and packet counts. Figure 1 illustrates distribution 
of lifetimes in bins of 1sec. The magnified figure presents the first 25 seconds, with higher 
resolution of 15.6 ms bins. Figure 2 shows connection size distribution, summarized in bins 
of 1Kbyte. The insert magnifies the first 9 Kbytes with 20 Byte bin-size. Figure 3 finally 
illustrates packets counts, including magnification for the first 100 packets. 
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Mori [19] presented mean values for flow durations on web and P2P flows extracted from 
inbound campus traffic in 2002. Web traffic yielded 9.5 sec mean, while P2P flow result in a 
mean of 307 sec. Projecting the values to our data, it can be concluded that the mean values 
of around 18 sec are a hybrid between web and P2P traffic, which is in fact the case due to 
University traffic on one hand and private student traffic on the other hand. Considering the 
underestimated nature of our values, it again indicates a quite substantial amount of long 
lasting P2P traffic on the measured links. Other studies, including Kim, Lan and Zhang 
[12][15][28], presented cumulative distribution figures, reporting of median values of about 
1sec and P80 values of around 10 sec. In the SUNET data especially the 80th percentile is 
significantly larger, again proofing that connections in contemporary traces tend to be 
significantly longer due to an increased amount of P2P traffic. This property is more 
pronounced for inbound connections when comparing the P80 values for connection lifetime. 
Surprisingly, inbound connections do not only tend to be longer, but are also more likely to 
be shorter than 5 seconds compared to outbound connections. This is indicated by the median 
values, but can be seen nicely in the magnification of figure 1. The large number of incoming 
connections in this region can be explained by rejected login attempts on application level, 
like SSH or SMTP. In general, figure 1 shows a number of protocol timeouts, typically close 
to half minute or minute borders. For most of the times, the fractions of inbound connections 
lie below the outbound ones, which is compensated by a higher number of long lasting flows, 
as discussed earlier. 

Figure 2: Conn. sizes with 1Kbyte bins (20 
Byte bins)  
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Figure 3: Packets per connection  
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Figure 1: Conn. lifetimes with 1sec bins 
(15.6ms bins)  

Protocol Breakdown  

Table 10: Statistical properties of TCP 
Conn. 
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Regarding connection sizes, Mori [19] also presented mean values with 20.6 Kbytes for web 
flows, and as large as 5.8 Mbytes for P2P flows. As for lifetimes, the mean values for the 
presented data lie in between these extreme values. Earlier studies reported about median 
values of around 1 Kbytes and P80 values of between 1 and 10 Kbytes [15][28], which is 
similar  to our findings. Even though in contrast to connection lifetimes, both median and 
P80 value are larger for inbound connections, there are peaks in the magnification of figure 2 
for incoming connection sizes below 1Kbyte and around 3 Kbytes. According to a port 
analysis, the former stems from connections trying to exploit a known security hole in some 
MS SQL server versions on a handful of hosts inside Göteborg, while the latter can be 
explained by unsuccessful SSH login attempts, probably mainly intrusion attempts as well. 
Generally, figure 2 shows that inbound connections tend to be less likely to carry small 
amounts of data, which again indicates that there is a higher number of “elephants” carrying 
a lot of data on the incoming link. This seems to be connected to the similar behaviour found 
for connection lifetimes, even though there is not necessarily a strong correlation between 
duration and size, as reported by Lan and Zhang [15][28]. The spikes for inbound traffic seen 
in figure 2 between 300 and 550 Kbytes are results of connections from a single host to one 
host on destination port 2135. This is rather a special application than another security 
exploit, since except these small connections there are also a larger number of connections 
carrying a large amount of data between these hosts. 
 
As illustrated in the magnification of figure 3, connections with less than 20 packets show 
very similar patterns for both directions, consequently resulting in similar median and P80 
values. Nevertheless, the differences in the mean values as well as the lower values for the 
inbound graph in figure 3 shows that packet counts are to some degree correlated with 
connection sizes. As for connection sizes, the spikes between 20 and 30 packets are artefacts 
from unsuccessful SSH logins, and the spikes between 300 and 360 stem from the 
unidentified connections to port 2135. 

5.4. TCP option usage 
In earlier work, TCP options analysis was typically done by counting occurrences of different 
TCP options in all SYN and SYN/ACK segments seen in packet-level traces [10][21]. In our 
current work, the thorough connection analysis allows us to give better insight into options 
advertisements between clients and servers within single TCP connections. Since this 
analysis is focused on proper established connections only, attacking and scanning traffic, 
which might bias simple counts of SYN segments, are filtered out. 
Table 11 summarizes TCP option employment for the four major TCP options types typically 
advertised during connection establishment. Fractions of connections carrying the particular 
option in SYN or SYN/ACK segments are given, split up for outbound and inbound 
established connections. The third column presents the fractions of connections advertising 
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the option in both initial segments, hence actually establishing the connection with the 
specific optional feature. 
 

 
 
 

In general, the numbers are in range of the reported values of the previous studies. The 
maximum segment size option (MSS) is used extensively by clients and servers for both 
directions.  To our surprise, the window scale (WS), timestamp (TS) and selective 
acknowledgement permitted (SACK) options on the other hand are about 1.5 times more 
common among inbound connections. Looking at the destination port numbers for these 
connections, the difference can be explained by a much more diverse mix of applications 
among inbound connections in favour of primarily web traffic on port 80 in outgoing 
connections. The incoming connections include large fractions of recognized P2P protocols, 
but also substantial amounts of SMTP, SSH and MS SQL sessions, which are mainly break 
in attempts as discussed in section 5.3. These protocols are often used to carry more data than 
conventional web traffic, so it seems natural that clients and servers are interested in 
optimizing throughput by use of these TCP options. 

6. UDP level 
Since UDP offers no connection establishment or termination, we defined UDP flows as the 
sum of bidirectional packets observed between a specific tuple of source and destination IP 
and port numbers, taking advantage of the timeout value of 20 min given by the trace 
duration. In the 2x73 network traces, 68 million such UDP flows have been observed, 
carrying around 7% of the packets and only 2-3% of the data  
Interestingly, 51 out of the 68 Million UDP flows (76%) carry less than 3 packets in either 
direction. Our first guess, that classical UDP services like DNS and NTP would be primarily 
responsible for these flows, proved to be wrong.  In fact, only 5% and 1.7% of the small UDP 
flows serve DNS or NTP requests, respectively. On the other hand P2P overlay networks, 
such as Kademlia or other distributed hash table (DHT) protocols, are responsible for at least 
18% of these small flows, where we expect this naïve port analysis to be a huge 
underestimate again. The purpose of these overlay networks is to keep the peers routing 
tables updated in a completely decentralized fashion. This is done periodically by sending 
DHT “pings” in small UDP packets, replied by the recipient. No significant difference 
between inbound and outbound DHT queries could be observed, which makes sense when 
considering the type and the nature of these overlay networks. 
Based on the simple port classification, different common network attacks on UDP port 
numbers for MS SQL, MS messenger “spam” or Netbios were found to be responsible for at 

Table 11: TCP options for inbound and outbound connections 
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least in 8% of the 51 Million short flows. These flows consisted in more than 90% of the 
cases of one inbound packet only, sometimes performing scans on entire IP ranges.  
The two main sources for UDP flows, P2P overlay networks and attacking traffic, finally also 
explain the extreme amount of distinct IP addresses seen on the outside of the links measured 
(presented in table 2) since P2P network span the entire globe and experience a very high 
fluctuation in peering partners. 

7. Summary and Conclusions 
We presented directional differences found on recent packet level traces taken on links with 
medium aggregation level, carrying traffic from two major Universities, about a dozen of 
large student dormitories and a local exchange point. Since access to contemporary traffic on 
highly aggregated links is still uncommon, we believe that this study can contribute to a 
better understanding of the changing behaviour of the Internet. After short discussions about 
the two main factors responsible for the observed directional differences in our traces, 
malicious traffic and P2P traffic, this paper will be closed with summarizing conclusions. 

7.1. Malicious traffic 
Already the protocol breakdown revealed one outstanding long-duration UDP DoS attack 
originated within a major University in Göteborg, due to an DoS script injected from outside 
by exploitation of a known vulnerability. The fact that this attack was undetected by the 
network management tools in operation indicates the need for continuous refinement of 
network monitoring policies.  
Despite this UDP burst, it can be said that basically every kind of malicious traffic is much 
more common in traffic coming from the main Internet. Already on a very high level 
analysis, incoming network scans were evident when analysing distinct IP addresses seen. 
There are about three times more rejected connections observed among inbound connections, 
with a majority of them being unreplied scanning attempts, but also a substantial number of 
immediate reset terminations. Around 90% of the counted header anomalies appeared on the 
incoming link, which goes hand in hand with the above mentioned scans. These packet 
header anomalies include inconsistencies in the IP flags, TCP header length and TCP 
connection flags field, which was discussed in more detail in an earlier study on the MonNet 
data [10]. Even though these header anomalies are very rare compared to the total number of 
packets, they indicated again skewed distribution of malicious traffic towards incoming 
traffic. The inconsistencies were shown to stem from network attacks trying to exploit 
protocol vulnerabilities as well as active OS fingerprinting tools.  
Also the analysis of statistical connection properties within established connections revealed 
a large number of inbound login attempts to SSH, SMTP or MS SQL servers. Finally,  
on UDP level scanning traffic and security exploits were shown to happen in more than  
90% of the cases within incoming traffic, which are as well in the order of millions in 
absolute numbers.  
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This summary of malicious behaviour confirms the suspicion that the main number of 
anomalies indeed originates on the outside, on the ”unfriendly” Internet. It was shown that 
anomalies are between 3 and 9 times more common among inbound data. Typical University 
campus networks, but even student networks, are comparable well behaving, probably due to 
higher configuration and administration efforts.   

7.2. P2P traffic 
Except the directional differences due to malicious traffic, P2P is a second source heavily 
influencing traffic properties. Even with a simple, underestimating port analysis, we could 
show that P2P traffic is a major part of the traffic, responsible for at least twice as much 
packets and volume among inbound traffic as compared to outbound traffic. Artefacts of P2P 
traffic were found in packet size distribution, TCP connection termination behaviour, TCP 
options and statistical connection properties. P2P traffic was also shown to be a major source 
for long-duration traces, especially among inbound connections. Additionally, P2P overlay 
traffic is responsible for the major amount of UDP flows, carrying typically less than 3 small 
sized packets, but being responsible for several millions of distinct IP addresses observed in 
the traffic. These short flows are furthermore hard to distinguish from malicious scanning or 
attacking traffic, which needs to be taken into consideration by network engineers and 
security experts working on sampled flow level analysis. 

7.3. Conclusion 
While some high-level analysis, like cumulated traffic volumes or protocol breakdown, could 
suggest an even distribution between inbound and outbound traffic, this study reveals that 
there are a number of significant directional differences found on different protocol levels. 
Especially the detailed TCP connection analysis, contrasting incoming and outgoing 
established connections by statistical means, revealed significant differences. Even though 
connections established in both directions show a typical client-server pattern, this behaviour 
is more pronounced among inbound connections. Generally, inbound connections, 
established from the outside, are shown to be more likely to carry larger volumes of data 
(elephants), larger number of packets and experience longer connection lifetimes. However, 
these differences, caused by the imbalance in P2P traffic, cancel out on high-level summaries 
because established inbound connections are on the other hand about 10% fewer than 
outbound connections.  
First of all, the comprehensive analysis yielded required insights for network developers and 
traffic engineers. Furthermore, the results can be important input in order to improve quality 
and authenticity of future simulation models.  Finally, the highlighted traffic anomalies are 
relevant for better understanding of security related issues like intrusion detection or 
detection of large scale attacks.  
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Abstract

In order to reveal the influence of different traffic classes on the Internet, back-

bone traffic was collected within an eight month period on backbone links of the

Swedish University Network (SUNET). The collected data was then classified ac-

cording to network application. In this study, three traffic classes (P2P, Web and

malicious) are compared in terms of traffic volumes and signaling behavior. Fur-

thermore, longitudinal trends and diurnal differences are highlighted. It is shown

that traffic volumes are increasing considerably, with P2P-traffic clearly dominat-

ing. In contrast, the amount of malicious and attack traffic remains constant, even

not exhibiting diurnal patterns. Next, P2P and Web traffic are shown to differ sig-

nificantly in connection establishment and termination behavior. Finally, an anal-

ysis of TCP option usage revealed that Selective Acknowledgment (SACK), even

though deployed by most web-clients, is still neglected by a number of popular

web-servers.1

1 Introduction

Today, many network operators do not know which type of traffic they are carrying. This prob-

lem emerged mainly in the early 2000’s, when P2P file sharing applications started to disguise

their traffic in order to evade traffic filters and legal implications. Since then, the network

research community started to draw increasing attention to classification of Internet traffic. Tra-

ditional port number classification was shown to underestimate actual P2P traffic volumes by

factors of 2-3 [1], thus more sophisticated classification methods have been proposed. These

methods are typically either based on payload signatures [2], statistical properties of flows [3]

or connection patterns [4].

A number of articles also present properties of different traffic classes resulting from traffic clas-

sification. Gerber et al. [5] classified flow measurements from a tier-1 ISP backbone in 2003.

1This work was supported by SUNET, the Swedish University Network
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Even if their classification method has been based on port numbers, they indicate a dominance

of P2P applications. Sen et al. [6] investigated connectivity aspects of P2P traffic on different

levels of aggregation (IP, prefix, AS) in 2002. The study was based on flow data collected at

a single ISP, classified by a port number method. More recent articles from 2005 and 2006

present differences between P2P and non-P2P traffic in terms of flow properties such as size,

duration and inter-arrival times [7, 8]. Perenyi et al. [8] additionally presents a comparison of

diurnal patterns for P2P vs. non-P2P traffic.

This article presents the results of a classification of current Internet backbone data. The datasets

do not include packet payloads, thus connection pattern heuristics [9] were used to classify the

datasets. The classification approach, disregarding packet payload data, has the advantage of

avoiding legal issues and has the capability to classify even encrypted traffic, which is gaining

popularity among P2P traffic. We chose to focus on 3 main traffic classes: (1) P2P file sharing

protocols; (2) Web traffic; (3) malicious and attack traffic. First, we show how these traffic

classes develop over a time period of eight months by highlighting trends in traffic volumes and

connection numbers, also pointing out some diurnal differences. Next, we present differences

between the traffic classes in terms of connection signaling behavior. This includes success

rates for TCP connection establishment, a breakdown of different TCP connection termination

possibilities and TCP option usage within established connections.

To our knowledge, this is the first attempt to characterize differences and trends within traffic

classes in terms of connection signaling, with exception of a brief discussion about connection

termination in [10]. We provide a thorough analysis of differences and trends for the selected

traffic classes, since they have a major impact on the overall traffic behavior on the Internet.

It is of general importance to follow trends in contemporary Internet traffic in order to react

accordingly in both infrastructure and protocol development. Furthermore a thorough analysis

of specific connection properties reveals how different traffic classes are behaving ’in the wild’.

Since the data analyzed was collected on a highly aggregated backbone during a substantial

time period, the results reflect contemporary traffic behavior of one part of the Internet. These

results are thereby not only valuable input for simulation models, they are also interesting for

developers of network infrastructure, applications and protocols.

2 Data Description

The two datasets used in this article were collected in April (spring dataset) and in the time

from September to November 2006 (fall dataset) on an OC192 backbone link of the Swedish

University Network (SUNET). In spring, four traces of 20 minutes were collected each day at

identical times (2AM, 10AM, 2PM, 8PM) as described in [11]. The fall dataset was collected

at 276 randomized times during 80 days [12]. At each random time, a trace of 10 minutes

duration was stored. To avoid bias when comparing the datasets, the 20 minute samples from

spring were treated as two separate 10 minute traces. Furthermore, for this study traces from

fall are only considered if collected during the time-window between 20 minutes prior and after

the collection times of spring (e.g. 1:40AM-2:40AM).

When recording the packet level traces on the 2x10GB links, payload beyond transport layer

was removed and IP addresses were anonymized due to privacy concerns. After further pre-

192 PAPER VII



processing of the traces, as described in [12] and [11], a per-flow analysis was conducted on

the resulting bi-directional traces. Flows are defined by the 5-tuple of source and destination IP,

port numbers and transport protocol (TCP or UDP). TCP flows represent connections, and are

therefore further separated by SYN, FIN and RST packets. For UDP flows, a flow timeout of 64

seconds was used [4]. The 146 traces in the spring dataset include 81 million TCP connections

and 91 million UDP flows, carrying a total of 7.5 TB of data. The reduced fall dataset, consisting

of 65 traces, includes 49 million TCP connections and 70 million UDP flows, carrying 5 TB of

data. In both datasets, TCP connections are responsible for 96% of all data.

3 Methodology

The resulting 130 million TCP connections and 161 million UDP flows have been fed into

a database, including per-flow information about packet numbers, data volumes, timing, TCP

flags and TCP options. The flows have then been classified by use of a set of heuristics based on

connection patterns. The classification method was introduced and verified on the April dataset,

as described in [9]. The heuristics are intended to provide a relatively fast and simple method

to classify traffic, which was shown to work well on traces even as short as 10 minutes. In the

present study the flows are summarized into three different traffic classes: P2P (file-sharing);

Web or HTTP (incl. HTTPS); Malicious and attack (i.e. scan, sweep and DoS attacks). Remain-

ing traffic was binned in a fourth class, denoted ’others’. ’Others’ includes mail, messenger, ftp,

gaming, dns, ntp and remaining unclassified traffic. The latter accounts for about 1% of all con-

nections. In this study, the focus is on trends and differences between P2P and Web traffic, with

some notable observations from malicious traffic highlighted as well. Besides the traffic clas-

sification, an analysis of traffic volumes and signaling properties is carried out in two further

dimensions: longitudinal trends between April and November and diurnal patterns between the

four time clusters (times of day).

4 Trends in Traffic Volumes

Longitudinal trends in TCP traffic volumes have been analyzed by building time series for the

three traffic classes within each of the four time clusters, representing times of day (2AM,

10AM, 2PM, 8PM). Due to space limitations, only a condensed time series of TCP traffic is

illustrated in Fig.1. The x-axis of the graphs represent time, with one bar for each 10 minute

long trace. The first row indicates an increase in traffic volume during 2006. While peak vol-

ume per 10 minutes lies at 70 GB in early April, volume reaches 85 GB in late April (right

after Easter vacation). This trend continues, with peaks of 94 GB in September and finally 113

GB in November. During one specific interval on November 8 as much as 131 GB have been

transfered via TCP. All peak intervals fall into the time cluster of 8PM. The second busiest time

cluster in terms of traffic volumes is the one at 2PM. Transfer volumes during 2PM reach on

average 80% of the peak values at 8PM. Nighttime and morning hours (2AM, 10AM) show the

lowest activity with half the transfer volumes of the busy evening hours. This diurnal pattern is

best visible in the April section of the first row in Fig.1.
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Figure 1: TCP data vs time (1st row); Appl. breakdown by data(2nd) and #conn.(3rd)

Even if there is an increase in data volumes of around 65% during a time period of eight

months, the breakdown into traffic classes remains constant. P2P applications account con-

stantly for as much as 93% and 91% of the data during evening and night time, respectively.

During office hours (10AM, 2PM) the fraction of P2P data is reduced to 86%. HTTP, in con-

trast, is responsible for 9% of TCP data transfered during office hours, and drops down to 5%

and 4% during evening and night time. This diurnal difference is explained by a network prefix

analysis, yielding that most P2P traffic originates from student dormitories whereas Web traf-

fic is commonly generated by Universities. The remaining data fractions account mainly for

’other’ traffic, since malicious traffic and attacks tend to be single packet flows, not carrying

substantial amounts of data.

The traffic breakdown in terms of connection numbers clearly shows that P2P connections typ-

ically carry higher amounts of data. Between 40% and 55% of the connections are classified as

P2P, following the diurnal patterns of traffic volumes. HTTP connections account for 25% of

all TCP connections during office hours, but drop down to 7% at night hours. Interestingly, the

fractions of both P2P and HTTP connections (or connection attempts) increased slightly from

April to November, while the fraction of malicious traffic decreased from around 30% to 20%

during the same time. This development turns out to be a consequence of the constant nature

of malicious traffic, such as scanning attacks. In absolute numbers, this traffic class remained

remarkably constant during the eight months. Due to the increase in overall traffic volume, its

relative fraction evidently was decreased. Since malicious or attack traffic shows neither lon-

gitudinal trends nor any significant diurnal pattern, we conclude that this type of traffic rather

forms a constant ’background noise’ in the Internet.

A similar analysis was also done for UDP flows. Even though larger in number, they are

only responsible for 4% of all data. UDP data volumes during 10 minutes increased from peak

values of 2.8 GB in April up to 4.6 GB in November. As in the case of TCP, peak intervals fall

into the 8PM time cluster. Afternoon hours experience moderate UDP data volumes, and little

UDP activity takes place during night and morning hours.
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P2P flows over UDP carry in 76% of all cases less than three packets, which can be explained

by signaling traffic as commonly used in P2P overlay networks such as Kademlia. In April, P2P

flows are responsible for around 80% of UDP data volumes and connection counts, while the

fraction has increased to about 84% in November. In absolute numbers, UDP P2P flow counts

have even doubled from April until November, which shows that P2P applications deploying

overlay networks via UDP are gaining popularity. Other traffic, including traditional UDP

services like NTP or DNS, accounts on average for only 8% of the UDP flows. As for TCP,

malicious traffic remains very constant in absolute numbers, which means that relative fractions

decreased from 12% to around 8% in November.

5 Differences between Traffic Classes

The following subsection highlights differences between P2P, Web and malicious connections

in terms of establishment and termination behavior. In the next subsection, TCP option deploy-

ment for P2P and Web connections is compared.

5.1 Differences in Connection Behavior

Fig.2 breaks down the success-rates of connection attempts for the three classes. Established

connections include TCP flows with successfully carried out 3-way-handshakes. The second

group of connection attempts did not fulfill 3-way-handshakes, but included an initial SYN

packet. Finally, there are flows with no SYN seen. These are TCP sessions starting before the

measurement interval. Such session fragments account for 13.5% of the 130 million connec-

tions seen. Malicious traffic usually consists of 1-packet flows only, which explains why only

few malicious connection attempts fall into the no SYN category. In the further analysis, we

will only focus on connections including initial SYN packets.

A notable trend can be observed in the P2P graph in Fig.2, where the fraction of unsuccessful

connection attempts increased from an average of 49% in April to 54% in November. Web traf-

fic on the other hand has significantly larger fractions of established connections, leaving only

an average of 16.3% non-established. Malicious traffic is more likely to be established in the

fall data, even though a majority of the malicious connections are still connection attempts. The

Figure 2: TCP Connection Breakdown
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Figure 3: Breakdown of non-established TCP connections

increase in established attack connections is caused by an increase in login attempts to MS-SQL

and SSH servers, with a few MS-SQL servers at a local University responsible for the majority

of the attempts. According to SANS Internet Storm Center (ISC), malicious activities on both

SSH (22) and MS-SQL (1433) ports increased significantly during 2006, which explains the

trends seen here.

P2P and malicious connections reveal no diurnal patterns. Within Web traffic however, unsuc-

cessful connection attempts account constantly for around 17.5% during all day, with exception

of a drop to 10% during night time hours (2AM). We have no explanation for this phenomena

other than HTTP connections are very rare in absolute number during night hours, which makes

the statistical analysis more sensitive to behavior of individual applications or user groups.

Non-established connections: Non-established TCP connections have been further divided

into connection attempts with one SYN packet only, attempts with direct RST reply, and asym-

metrical traffic (Fig.3). Due to transit traffic and hot-potato routing, 13% of the connections are

asymmetrically routed. It is not possible to observe a three-way handshake in these cases.

None of the traffic classes exhibits any significant diurnal pattern for non-established TCP

connections. However, Fig.3 clearly highlights major differences between all three traffic

classes. The already small fraction of non-established Web traffic (16.3% of all traffic) is mainly

explained by asymmetrical traffic, and real unsuccessful connection attempts are very rare. Ma-

licious traffic consists to a large degree of single SYN packet flows only. Single SYN flows are

also dominating non-established P2P connections. While such connection attempts accounted

for 71% in April, their fraction increase to 79% in November. This trend is also responsible

for the increase of non-established P2P connections observed in Fig.2. Even if the high number

of unsuccessful connection attempts within P2P traffic has been observed earlier [10], it is in-

teresting to note that there is a clear trend in the fractions of one-SYN connections within P2P

flows. The fraction increased by 23% (from 35% to 43%) within a period of 8 months.

Established Connections: Finally, established connections are broken down according to their

termination behavior in Fig.4. Besides the proper closing approaches with one FIN in each

direction or only one RST packet, as prescribed in the TCP standard, two unspecified termina-

tion behaviors have been observed. Connections closed by FIN, followed by an additional RST

packet have been seen in direction of the initial SYN (typically the client) and the response

(server). Finally, a number of connections were not closed during the measurement interval.
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Figure 4: Breakdown of established TCP connections

The larger fraction of unclosed P2P connections is explained by the longer duration of P2P

flows compared to Web traffic, as observed by Mori [7].

As for non-established connections, termination of Web connections neither shows signif-

icant trends nor diurnal patterns. HTTP connections are closed properly in 75% of all cases.

Another 15% are closed by RST packets, mainly due to irregular web-server and browser imple-

mentations as noted by Arlitt [13]. FIN+RST behavior as well as unclosed connections (which

corresponds to longer flows) are uncommon within Web traffic.

Even if there are no diurnal pattern observable, Fig. 4 indicates a significant change in ter-

mination behavior of P2P connections from spring to fall 2006. In April, only slightly less

than half of the P2P connections have been closed properly with two FINs. As much as 20%

of established P2P connections have been terminated with FIN plus an additional RST packet

send by the server (or responding peer). A couple of popular hosts inside a student network

have been identified as main source of this behavior. A commented text in the source code

of a popular P2P client indicates that connections are closed with RST deliberately to avoid

the TCP TIME_WAIT state in order to save CPU and memory overhead. In fall however, the

fraction of FIN+RST terminations by the responder was reduced to around 8%, compensated

by an increase in both valid TCP terminations, 2xFIN and single RST. Due to missing payload

data, it was not possible to differentiate between different P2P software and version numbers.

We suspect, that either the developers of the P2P application fixed this non-standard behavior

in updated versions of the software, or the misbehaving P2P software lost popularity and was

replaced by better behaving software by the users during 2006. However, the breakdown in

Fig.4 shows that P2P traffic is mainly responsible for the large number of RST packets seen in

todays networks.

5.2 Differences in Option Deployment

Finally, deployment of the most popular TCP options during connection established has been

investigated for P2P and Web traffic (Table 1). For each of the four most popular TCP options,

three different possibilities are distinguished: established - the option usage was successfully

negotiated in SYN and SYN/ACK packets; neglected - the option usage was proposed in the

SYN, but not included in the SYN/ACK; and none - the option was not seen in the connection.
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(a) TCP Options in P2P Conn.

MSS SACK WS TS

estab. 99.9% 91.0% 14.9% 8.8%

neglected 0.1% 6.5% 0.6% 1.0%

none 0.0% 2.5% 84.5% 90.2%

(b) TCP Options in HTTP Conn.

MSS SACK WS TS

estab. 99.6% 65.7% 16.0% 13.4%

neglected 0.4% 27.9% 4.3% 4.3%

none 0.0% 6.4% 79.7% 82.3%

Table 1: Differences in TCP Option Deployment

Option usage turned out to be remarkably constant, with neither longitudinal nor diurnal

trends. However, it is surprising to find such notable differences in option usage between traffic

classes, considering that protocol stacks in the operating system, and not applications, decide

about option usage. The MSS option is almost fully deployed, which agrees with the fact that

the MSS option is set by default in all common operating systems. The SACK permitted option,

in fact also a default option, is commonly proposed by initiating hosts, but is in 28% of the Web

connections neglected. Interestingly, this fraction is significantly smaller in the case of P2P

traffic, with only 6.5% neglecting SACK support.

While Linux hosts have the Window Scale (WS) and Timestamp (TS) options enabled by de-

fault, Windows XP does not actively use the options, but replies with WS and TS when receiving

SYN packets with the particular option. This policy is well reflected by P2P connections, where

WS and TS are rarely neglected, but either established or not used at all. HTTP connections

do not really reflect this assumption, with 4.3% of WS and TS requests neglected by servers.

However, WS and TS are established more often within Web traffic.

We suspect that the usage of WS and TS options within P2P traffic somewhat reflects the pro-

portions of Linux (WS and TS enabled by default) and Windows systems (WS and TS disabled

actively, but responding to request) on the links measured. The differences in option deployment

for Web traffic however stem from a differing communication nature. While Web traffic repre-

sents classical client server communication, with one dedicated server involved, P2P represents

a loose network of regular user workstations. Web-servers, as a central element, can thereby

influence the behavior of larger numbers of connections. This suspicion is further confirmed

by the fact that a majority of the HTTP connections neglecting usage of SACK are directed to

less than 100 web-servers, which consistently do not respond with SACK options. Such central

elements do not exist in P2P overlay networks. Furthermore, web-servers are more likely to

be customized or optimized due to their specific task, whereas user workstations usually keep

default settings of the current operating system. Some active measurement samples taken in Oc-

tober 2007 proved that popular web-servers, like google, yahoo and thePirateBay, still neglect

SACK, WS or TS options.
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6 Summary and Conclusions

In order to study trends and differences within the main traffic classes on the Internet, aggre-

gated backbone traffic has been collected during two campaigns in spring and fall 2006 [12].

The collected packet level data has then been summarized on flow level. The resulting connec-

tions have finally been classified into P2P, Web and malicious traffic, using a connection pattern

classification method [9]. An analysis revealed that overall traffic volumes are increasing for

both TCP and UDP traffic, with highest activities at evenings. On diurnal basis, P2P and HTTP

traffic exhibit different peak times. P2P traffic was found to be clearly dominating with 90% of

the transfer volumes, especially during evening and night times. In contrast, HTTP traffic has

its main activities (9% of the data-volumes) during office hours. Similar diurnal patterns have

been observed in terms of connection numbers, even if P2P connections are not as dominating

as in the case of data volumes. This indicates that P2P connections typically carry more data

than Web traffic. Malicious and attack traffic is responsible for a substantial part of all TCP

connections and UDP flows, but plays a minor role in terms of data volumes since it typically

consists of 1-packet flows only. It was interesting to observe that the fraction of malicious TCP

and UDP flows remained constant in absolute numbers both on diurnal and longitudinal basis,

even though traffic volumes generally increased. This shows that malicious traffic (e.g. scan-

ning attacks) forms a constant background noise on the Internet.

In terms of connection signaling behavior, major differences between the three traffic classes

have been highlighted. The number of unsuccessful P2P connection attempts, which already

dominated the P2P connection breakdown in spring, was shown to have increased further until

fall. We conclude, that the large fraction (43%) of 1-packet flows on one hand and the large

average data amounts per P2P connection on the other hand indicate a pronounced ’elephants

and mice phenomenon’ (Pareto principle) [7] within P2P flow sizes. Regarding termination be-

havior, P2P connections exhibit a clear trend towards higher fractions of proper closings in fall.

HTTP connections on the other hand appear to behave comparable well according to specifica-

tion at all times.

Finally, also TCP option deployment was shown to differ significantly between P2P and Web

traffic. While P2P traffic rather reflects an expected behavior considering the default setting in

popular operating systems, HTTP shows artifacts of the traditional client server pattern, with

some dedicated web-servers neglecting negotiation for certain TCP options. This is especially

true for the SACK option. We conclude that even though SACK is deployed by almost all

P2P hosts and web-clients, a number of web-servers still neglect its usage. It is unclear to us,

however, for which reasons web-server software or administrators would choose not to take

advantage of certain TCP features, like SACK.

In the presented study, differences between traffic classes have been found in all aspects dis-

cussed, even if not always expected. The results provide researchers, developers and practi-

tioners with novel, detailed knowledge about trends and influences of different traffic classes

in current Internet traffic. The data analyzed was collected on a highly aggregated backbone

link during a substantial time period, thus reflecting contemporary traffic behavior on one part

of the Internet. Besides the general need of the networking and network security community

to understand the nature of network traffic, information about behavior differences as seen ’in
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the wild’ can be important when developing network applications, protocols or even network

infrastructure. Furthermore, the results form valuable input for future simulation models.
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1 Introduction

The Internet, while emerging as the key component for all sorts of communication, is far from

well-understood. The goal of traffic classification is to understand the type of traffic carried

on the Internet, which continually evolves in scope and complexity. For security and privacy

reasons, many applications have emerged that utilize obfuscation techniques such as random

ports, encrypted data transmission, or proprietary communication protocols. Further, applica-

tions adapt rapidly in the face of attempts to detect certain types of traffic, creating a challenge

for traffic classification schemes. Research papers on Internet traffic classification try to classify

whatever traffic samples a researcher can find, with no systematic integration of results. With

the exception of machine learning techniques for traffic classification[1], we know of no com-

plete overview of traffic classification attempts. To fill this gap, we have created a structured

taxonomy of traffic classification papers and their datasets. To illustrate its utility, we use the

taxonomy to answer the recently most popular question about traffic (“How much is peer-to-

peer file sharing?”). Our survey also reveals open issues and challenges in traffic classification.

2 Research Review

Our review is based on 64 papers published between 1994 and 2008, starting with papers from

top-ranked, peer-reviewed academic research conferences, and then including papers cited from

this seeding set of papers, as well as follow-up papers written by the same authors.

We use the phrase traffic classification to refer to methods of classifying traffic data sets

based on features passively observed in the traffic, according to specific classification goals.

On a supplementary web page [2], we group papers into five categories: survey, analysis,

methodology, tools and others. Analysis papers seek trustworthy numbers on traffic compo-

sition, while methodology papers focus on the methods of classification. We also provide a

flexible, interactive table that supports selection of relevant attributes of papers, e.g., data sets,

methods, goals, and main findings.
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Figure 1: Trends of applications and features

2.1 Data Sets

Several public and private passive measurement infrastructures have provided a variety of data

sets for Internet traffic classification studies. Based on our analysis, we find that these 64 papers

make use of more than 80 data sets, which we classify based on time of collection, link type,

capture environments, geographic location, and payload length.

2.2 Classification Goals and Features

Although traffic classification is a rather specific research field, the goals of these research pa-

pers are not identical. Some only have coarse classification goals, i.e., whether it’s transaction-

oriented, bulk-transfer, or peer-to-peer file sharing. Some have a finer-grained classification

goal, i.e., the exact application generating the traffic.

Selection of traffic features used for classification evolves with application development.

Media-rich entertainment applications - and associated attempts to discriminate against such

applications - have inspired sophisticated obfuscation methods. Fig.1 gives a rough view of ap-

plication and classification features. Recently, some applications (uTorrent, PPStream, PPLive)

have changed from using TCP to UDP, a dramatic challenge for traditional traffic engineering.

Fifteen years ago, researchers could reasonably accurately classify traffic using TCP or UDP

port numbers, but as applications began to use unpredictable ports, accurate classification re-

quires payload examination. Examining payload is a controversial methodology due to privacy

concerns, and is not even possible for encrypted payload, so researchers have studied techniques

that are independent of packet content, such as statistical features based on network flows or

underlying social networks to identify per-host behavior.

2.3 Methods

Methods to classify traffic at an application level include exact matching, e.g., of port number

and payload; heuristic methods, applied e.g. on connection patterns to infer social networks; or

204 PAPER VIII



machine learning based on statistical features. We group machine learning methods into two

categories: Supervised Learning and Unsupervised Learning. Naive Bayes, Decision Tree, NN,

LDA, QDA, Bayesian Neural network are supervised learning algorithms; EM, AutoClass and

K-Means are unsupervised learning algorithms [1].

3 Survey Analysis: How much P2P?

P2P traffic is one of the most challenging traffic types to classify. This is the result of substantial

legal interest in identifying it and even more substantial negative repercussions to the user if

P2P traffic is accurately identified. The misaligned incentives between those who want to use

and those who want to identify P2P applications, together with the tremendous legal and privacy

constraints against traffic research, render scientific study of this question near impossible. Even

if possible, wide variation across links would prevent a simple numeric answer to the question

of how much P2P traffic there is on the Internet.

Nonetheless, our taxonomy does reveal insights: the fraction of peer-to-peer file sharing

traffic observed ranges from 1.2% to 93% across the 18 (out of 64) papers that provide such

numbers. We also know that the average fractions reported have increased considerably from

2002 to 2006 (Table 1). Tables 2 and 3 show that results also vary widely by link and geographic

location. Table 3 suggests that P2P is more popular in Europe, probably due to stricter policies

(MPAA and RIAA) in North America. Note that the Asian results are from Japanese data

sets, in which 1.34% and 1.29% are based on port numbers and therefore likely to significantly

underestimate the fraction of P2P traffic. Furthermore, the amount of P2P traffic also varies by

time of day, with higher fractions at night [3, 4].

One study[3] suggests that peer-to-peer applications are used more often at home than in

the office. Finally, a study[4] in Europe found a higher fraction of P2P traffic on an Euro-

pean university link than some Canadian academics[3] found on their campus. Many of these

numbers are based on statistical or host-behvioral classification, not the most reliable methods

of detecting applications. More accurate methods involve examination of traffic contents (if

unencrypted), which is fraught with legal and privacy issues.

Our taxonomy can allow similar analyses of other open questions, such as trends and devel-

opment of traffic classes or features, yielding new insights into Internet traffic.

Table 1: P2P Range (Year)

Year Range of P2P Volume Paper

2002 21.5% [5]

2004 9.19-60% [6],[7],[8],[9],[10]

2006 35.1-93% [11],[3],[12],[4]
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Table 2: P2P Range (Link Location)

Year Link Location Range of P2P Volume Paper

2004 Campus link 31.3% [8]

2004 ADSL link 60% [10]

2004 Backbone link
9-14% [6],[9]

17-25% [7]

Table 3: P2P Range (Geographic Location)

Geo Location Year Range of P2P Volume Paper

Europe
2005 60-80% [13]

2006 79-93% [14],[4]

North America

2003 8%,10.7% [6]

2004 14%, 9.9% [6]

2003-04 9.2-70% [7],[9],[15]

2006 21-35% [11],[3],[12]

Asia

2002 21.5% [5]

2005 1.34% (port-based) [16]

2008 1.29% (port-based) [16]

4 Discussion

This research review, including 64 papers and more than 80 data sets, shows that traffic classi-

fication methods have evolved in response to the more sophisticated obfuscation techniques of

network applications. We present a rough taxonomy of traffic classification approaches, based

on features, methods, goals and data sets.

Our survey review also reveals shortcomings with current traffic classification efforts. First

of all, the variety of data sets used does not allow systematic comparison of methods. Few

research groups (can) share their datasets. Already true ten years ago, the field of traffic classi-

fication research still needs publicly available, modern data sets as reference data for validating

approaches. This need however requires clear policies for data sharing, including accepted

anonymization and desensitization guidelines. Secondly, the lack of standardized measures and

classification goals is further amplifying the poor comparability of results. For example, there

exists no clear definition for traffic classes such as P2P or file-sharing.

Despite these shortcomings, we showed how the taxonomy can shed insight on questions

such as: "how much of modern Internet traffic is P2P?" Though we found some trends and

indications, we have far too little data available to make conclusive claims beyond "there is a

wide range of P2P traffic on Internet links; see your specific link of interest and classification

technique you trust for more details."
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Abstract

In this paper Internet backbone traffic is classified on transport layer according to net-

work applications. Classification is done by a set of heuristics inspired by two previous

articles and refined in order to better reflect a rough and highly aggregated backbone envi-

ronment. Obvious misclassified flows by the existing two approaches are revealed and up-

dated heuristics are presented, excluding the revealed false positives, but including missed

P2P streams. The proposed set of heuristics is intended to provide researchers and network

operators with a relatively simple and fast method to get insight into the type of data carried

by their links. A complete application classification can be provided even for short ’snap-

shot’ traces, including identification of attack and malicious traffic. The usefulness of the

heuristics is finally shown on a large dataset of backbone traffic, where in the best case only

0.2% of the data is left unclassified.

1 Introduction

Reliable classification of Internet traffic based on network applications is still an open research

issue. However, network operators need to know the type of traffic they are carrying, amongst

others in order to improve network design and provisioning and to support QoS and security

monitoring. Ongoing measurements will furthermore reveal trends and changes in the usage of

network applications. A good example is the shift in the early 2000’s, when P2P file sharing

replaced HTTP as the Internet’s ’killer application’, implying not only changes in data volumes,

but also in traffic properties.

Different approaches to classify network traffic exist. Traditionally, traffic was classified

based on source and destination port numbers. While this approach is very simple and does

not require any packet payload, it is highly unreliable in modern networks. This is especially

true for most P2P applications, which are trying to disguise their traffic in order to evade traffic

filters and legal implications. It was shown that pure port number analysis underestimates actual

P2P traffic volumes by factors of 2 to 3 [1].
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A more reliable technique involves analysis of packet payloads. This approach can poten-

tially provide highly accurate results given a complete set of payload signatures [2]. Beside the

high effort of keeping the set of signatures updated, this method relies on network traces includ-

ing packet data, which is uncommon due to privacy and legal concerns. Furthermore matching

payload signatures on high-speed links is not trivial and poses high processing requirements.

A more recent classification technique is based on statistical properties of flows. A promis-

ing feature of these methods is that they are neither relying on port numbers nor on packet

payload. However, the success of such ’statistical fingerprints’ highly depends on the accuracy

of the training data used. Ensuring accuracy and authenticity of the training sets is still an open

issue [3], especially for disguised P2P flows.

Finally, network data can be classified according to connection patterns. Instead of looking

at individual packets or flows, sequences of flows to or from a specific endpoint are matched

with a set of predefined heuristics [4, 5]. These heuristics typically don’t require packet payload

and could potentially even disregard port numbers.

We initially intended to classify Internet backbone data in order to investigate the influence

of P2P applications on traffic properties. Consequently it was planned to apply an existing and

verified classification technique. Since our available datasets did not include packet payload and

accurate training data, payload signatures or statistical fingerprinting could not be applied. Thus

applying straight-forward connection pattern heuristics was the obvious approach. Karagiannis

et al. [4] presented a set of two heuristics for transport layer identification of P2P traffic, includ-

ing seven rules for removing false positives. The paper verifies that their method can identify

95% of P2P flows, with around 10% false positives compared to a carefully carried out payload

analysis on OC-48 backbone data. Additionally, Perenyi et al. [5] proposed an updated set of

six heuristics to identify and analyze P2P traffic, based on very similar ideas like Karagiannis.

These heuristics were verified against traffic generated in a lab environment, yielding a hit ratio

for P2P traffic of over 99%, with less than 1% false positives or unclassified P2P flows.

After applying the approaches of both Karagiannis and Perenyi to our data, it turned out that

their results differ substantially. Furthermore, obvious false positives were detected in our data

with both classification methods. As a result, we propose a refined combination of the heuris-

tics by Karagiannis and Perenyi including some additions. The modifications were necessary to

make the classification suitable for relatively short traces of a harsh Internet backbone environ-

ment, including highly aggregated and diverse traffic with a substantial amount of attacking and

malicious traffic. Besides being based on the verified heuristics of Karagiannis and Perenyi, the

results where further verified by manual inspection. Flows, which are not classified as P2P traf-

fic by all three applied sets of heuristics are separately discussed regarding their most probable

traffic class, thereby identifying obvious misclassification.

2 Data Description

Our dataset was collected during 20 days in April 2006 on the OC192 backbone of the Swedish

University Network (SUNET). During this period, four traces of 20 minutes were collected each

day at identical times (2AM, 10AM, 2PM, 8PM), as described in [6] and [7]. After recording the

packet level traces on the 2x10 Gbit/s links, payload beyond transport layer was removed and IP
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addresses were anonymized due to privacy concerns. A per-flow analysis was conducted on the

resulting bidirectional traces, where flows are defined by the 5-tuple of source and destination

IP and port numbers as well as transport protocol. TCP flows represent connections, and are

therefore further separated by SYN, FIN and RST packets. UDP flows are separated by a

timeout of 64 seconds. The 73 traces in the dataset sum up to 10.7 billion packets, containing 7.5

TB of data. We identified 81 Million TCP connections and 91 Million UDP flows, with the TCP

connections carrying 97% of all data. The further analysis deals only with TCP connections,

even though the classification heuristics have been successfully applied to UDP flows as well.

3 Proposed Heuristics

The set of heuristics proposed in this paper is strongly inspired by the heuristics by Karagiannis

[4] and Perenyi [5], and will therefore be presented briefly only. The classification is based

on connection patterns, but in some cases also port numbers are taken into account. Besides

the rules for filtering out P2P traffic (H1-H5), a number of heuristics are used to remove false

positives from flows suspected to be P2P traffic (F1-F10). These ’false positive’ rules in turn

can be used to classify other types of traffic, as shown in section 5. In contrast to Perenyi’s

approach, most of our proposed heuristics (with exception of H5 and F10) are first applied in-

dependently to all flows and are then prioritized. We apply these heuristics to our dataset in 10

minute intervals, which means that every interval is analyzed self-contained, without memory

of previous intervals. Even though such memory could improve the accuracy of the results, our

approach has the advantage to allow operators to classify snapshots of their traffic fast and in

an ad hoc fashion. We will show that even 10 minute intervals can provide satisfying results.

The proposed heuristics include a number of thresholds which might be adjusted. For our data

the thresholds used were derived empirically through experiments on a number of traces. In

the following list of heuristics, (K) (Karagiannis) or (P) (Perenyi) indicate by which previous

method the heuristic was inspired, while (J) (John) marks newly introduced rules.

H1: TCP/UDP IP Pairs:(K),(P). This rule exploits the fact that many P2P applications use

TCP for data transfer and UDP for signaling traffic. Source and destination IP pairs, which

concurrently use TCP and UDP are therefore marked as P2P hosts. All flows to and from these

hosts are marked as potential P2P flows. Concurrent here means usage of TCP and UDP within

the 10 minutes interval. Karagiannis identified some non-P2P applications which show a similar

behavior, such as netbios, dns, ntp and irc (Table 3 in [4]). UDP flows from these applications

are excluded from this heuristic based on their port-numbers.

H2: P2P Ports:(P). Even though many P2P applications choose arbitrary ports for their

communication, approx. one third of all P2P traffic can still be identified by known P2P des-

tination port numbers [1]. Furthermore, it seems disadvantageous for non-P2P applications to

deliberately use well known P2P ports for their services, since traffic on these ports is often

blocked by traffic filters in some networks. Flows to and from port numbers listed in Table 3 of

[5], enriched with additional P2P ports, are marked as potential P2P traffic.

HEURISTICS TO CLASSIFY INTERNET BACKBONE TRAFFIC BASED ON... 213



H3: Port Usage:(P). In normal application, the operating system assigns ephemeral port

numbers to source ports when initiating connections. These numbers are often iterating through

a configured ephemeral port space. It is very unusual, that the same port numbers are used

within short time periods. This however can be the case for P2P applications with fixed ports

assigned for signaling traffic or data transfer. If a source port on a host is repeatedly used within

60 seconds, the host is marked as P2P host, and all flows to and from this host are marked as

potential P2P flows.

H4: P2P IP/Port Pairs:(K). If listening ports on peers in P2P networks are not well known

in advance, they are typically propagated to other peers by some kind of signaling traffic (e.g.

an overlay network). This means that each host connecting to such a peer will connect to this

agreed port number, using a random, ephemeral source port. As noted by Karagiannis, P2P

peers usually maintain only one connection to other peers, which means that each endpoint

(IP,port) has at least the same number of distinct IP addresses (#sIP) and number of distinct

ports (#sPort) connected to it. If #sPort-#sIP<2 and #sIP>5, the host is considered as P2P host,

and all flows to and from this host are marked as potential P2P.

F1: Web IP/Port Pairs:(K). Web traffic on the other hand typically uses multiple connec-

tions to one server. For this reason hosts are marked as web-hosts, if the difference between

#sPort and #sIP connected to an endpoint (IP,port) is larger than 10, the ratio between #sPort

and #sIP is larger than two and at least 10 different IPs are connected to this endpoint (#sPort-

#sIP>10 and #sPort/#sIP>2 and #sIP>10). All flows with http port numbers (80, 443, 8080)

to and from these webhosts are then marked as web traffic.

F2: Web:(P). To further identify web traffic, we follow Perenyi’s heuristic number 2, taking

advantage of the fact that web clients typically not only use multiple, but even parallel connec-

tions to webservers. Hosts with parallel connections to a http port are considered as webservers.

All flows to and from web servers on http ports are marked as web traffic.

F3: DNS:(K). Traditional services like dns sometimes use equal source port and destina-

tion port numbers. As suggested by Kargiannis, we mark endpoints (IP,port) as non-P2P, if it

includes flows with equal source- and destination port and port numbers smaller than 501. All

flows to and from this endpoint are then marked as non-P2P traffic.

F4: Mail:(K). Hosts receiving traffic on mail ports (smtp, pop, imap) and in the same anal-

ysis interval also initiate connections to port 25 on other hosts are considered to be mailservers.

All flows to and from mailservers are marked as mail traffic.

F5: Messenger:(K). Popular messenger and chat servers (icq, yahoo, msn, jabber, irc) tend

to have long uptimes and rarely change IP addresses, especially when maintained by commer-

cial providers such as Microsoft and Yahoo. To improve the accuracy of the results, in this

heuristic we therefore take advantage of the whole 20 day long dataset. Hosts, connected to by

at least 10 different IPs on well known messenger ports within a period of at least 10 days, are

marked as messenger servers. All traffic to and from these hosts on known messenger ports is

classified as messenger traffic.
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F6: Gaming:(J). Popular game servers (currently only the most common online games

Half-Life and World of Warcraft) are identified in the same fashion as messenger servers. All

traffic to and from the game servers on well known gaming ports is classified as gaming traffic.

F7: Ftp: (J). Ftp was not taken into account by Karagiannis, while Perenyi implicitly in-

cluded it as part of its ’well known port’ rule. Identifying data transfer in passive ftp remains a

problem. Active ftp data transfer on the other hand can easily be marked as ftp traffic identified

by an initiating sourceport number of 20, as used by ftp servers to actively serve their request-

ing clients.

F8: non P2P Ports:(P). As noted by Perenyi, destination ports are still suitable to identify

traffic of some common applications. Our set of well known non-P2P ports includes netbios,

dns, telnet, ssh, ftp, mail, rtp and bgp. All flows to the listed destination ports are marked as

non-P2P flows.

F9: Attacks:(J). This rule is probably the most significant improvement to the original

heuristics. While Perenyi does not take malicious traffic into account at all, Karagiannis rules

out simple network scans as false positives. We first identify suspicious pairs of source IPs and

destination Ports (AttackPairs). All flows with source IP and destination port inside the list of

AttackPairs are then marked as attacks. AttackPairs are identified by three different cases:

a) Sweep: The ratio between number of destination IPs (#dIP) and number of destination ports

(#dPort) from a certain host is greater than 30. This means that one host is connecting to a lot

of hosts with only a few different port numbers, as typically the case when scanning IP ranges

for vulnerabilities on specific ports.

b) Scan: The ratio between #dIP and #dPort is less than 0.33 and #dIP is less than 5. This

would be the case if one host is scanning a small number of specific, dedicated targets on a

large number of different ports.

c) DoS: #dIP is less than 5, #dPort is less than 5 and the average number of conn. per sec

(conn/s) is greater than 6. This behavior represents ’hammering’ attacks, where one host is

trying to overload a few targets (typically one) by opening connections to a few services very

frequently.

F10: unclassified, known non-P2P Port:(J). Up to this point all heuristics mark flows in-

dependent of each other. All flows left unmarked until now are neither suspected to be P2P

traffic nor obvious cases of non-P2P traffic. We believe it is safe now to apply a port number

classification on the previously unclassified flows. All flows, whose source- or destination port

number matches a set of well-known non-P2P port numbers including (http, messenger, game)

are classified non-P2P, if not classified by any heuristics (H1-H4, F1-F9).

H5: unclassified, long flow:(P) After removing well known applications from the unclassi-

fied flows, we mark remaining unclassified flows which carry more than 1 MB of data in one

direction or have connection durations of over 10 minutes as P2P flows. This rule is based on

Perenyis heuristic 6, even though we believe it is a very weak rule. However, there is a large

probability, that such long flows in fact are P2P flows.
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After running an analysis on our dataset based on the presented heuristics, we classify all

flows as P2P traffic which have been classified by one or more of the heuristics H1-H5, and at

the same time NOT being classified by any of the false positive heuristics F1-F10. In Section 4,

flows marked by H5 are included to P2P traffic. However, in Section 5 we chose to treat traffic

classified by this heuristic separately.

Weaknesses: The above suggested mixture of connection pattern and port number classifi-

cation has some weaknesses. First of all, the analysis interval can greatly influence the success

of the heuristics, especially for those analyzing connection patterns. Longer intervals yield bet-

ter results given that the various empirical thresholds are adjusted. A natural border for the

analysis interval is obviously given by memory and computational constraints. Additionally,

there is a risk with too long intervals since activities on the Internet are often short lived, and

e.g. a host doing a scanning campaign on port 80 might simply surf the Internet an hour later.

Another problem in this context are networks behind NATs or with dynamically assigned IP ad-

dresses. A second weakness is the length of the traces used. For connections established before

the measurement interval the initiator is unknown, and it is unclear which host is source and

which is destination. Additionally there is typically some asymmetrically routed traffic in back-

bone networks, which needs to be considered as special case when implementing the heuristics.

Furthermore, heuristics based on connection patterns are depending on a certain amount of con-

nections per host during the analysis interval. Finally, heuristics relying on empirical thresholds

are not fail-proof, and it is possible to come up with examples for false positives for any of

them. However, both Karagiannis and Perenyi proved that these heuristics can be effective

when carefully prioritizing the different rules.

4 Verification of the proposed Heuristics

To verify the proposed adjustments, we classified our backbone data by each of the three sets of

heuristics (Karagiannis, Perenyi and our own proposal in section 3). For each flow, a bitmask

was set in a database according to matching rules. This method allowed us to analyze intersec-

tions between the three approaches separately - meaning flows marked as P2P traffic by either

one, two or all three of the approaches. The results are illustrated by the Venn diagrams in fig.1,

presenting connection counts (a) and amount of data (b) in absolute numbers. The three circles

represent P2P flows classified by the different rule-sets (Karagiannis left, Perenyi right, new

proposal beneath). The following paragraphs will discuss the different intersections (IS I-VII),

thereby motivating the proposed modifications and additions to the original approaches.

IS I: This intersection represents flows classified as P2P by Karagiannis only. A number of

updated rules identified these flows as false positives. Rule F9 (attacks) marked 53% of them,

often classified as known non-P2P ports by Perenyi. This is plausible, considering that these

connections are mainly 1-packet flows, directed to popular scanning ports (135, 139, 445). Rule

F2 (web) classified another 25% of these connections, carrying 40% of the data in this inter-

section. Since parallel connections to http ports are a strong indication for web traffic, F2 is

regarded as a reliable rule. F8 (non P2P-ports) accounts for 15% of these connections, carrying

43% of the data, mainly on ports for rtp, ssh and mail. This is plausible, since it is common that
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(a) #connections (106) (b) Amount of data (TB)

Figure 1: P2P traffic by Karagiannis (K), Perenyi (P) and new proposal (J)

these applications carry large amounts of data, so there is no reason considering them as P2P

flows. The remaining flows are either marked by F7 (active ftp) or F10 (unclassified, but known

non-P2P port).

IS II: In this intersection, 99% of the data was classified as P2P by Perenyi’s ’long flow’

rule only. This is obviously Perenyi’s weakest heuristic, since it simply considers any flow car-

rying more than 1 MB of data or lasting longer than 10 minutes as P2P. 75% of this data is

considered as false positive according to F10. Unclassified by any other heuristic, a pure port

number classification marks these flows as web flows according to their destination http ports.

Another 10% are marked as web traffic by F2. The remaining data was classified by F4 (mail),

F5 (messenger) and F6 (gaming), all three considered to be accurate rules, taking connection

patterns and port number into account. In terms of connection numbers, 95% of the connections

in IS II are again identified as false positives by F9 (attacks) with similar properties as in IS I.

IS III: All of the flows only classified as P2P by the proposed heuristics are unclassified

by Perenyi. Even Karagiannis left 45% unclassified, with the remaining 45% classified by the

non-P2P IP/Port Pair rule. In [4] this rule was identified as unreliable if less than 5 IPs are

connected to an IP/Port Pair. Since in H4 this restriction was taken into account, it is plausible

to include the flows marked as P2P in IS III based on combinations of H4 and/or H3 (port usage).

IS IV: The flows classified as P2P by both Karagiannis and Perenyi are in 98% of the cases

again marked as false positives by F9 (attacks), carrying very little data. In terms of data,

Perenyi’s ’long flow’ rule and Karagiannis’ IP/Port Pair rule are responsible for 90% of the data

in this intersection. As discussed above, both rules are considered rather weak. Since addi-

tionally none of the refined P2P heuristics (H1-H4) matched, rule F10 (unclassified, but well

known port) is reason enough to exclude 80% of this flows as false positives (mainly targeting

http ports). The remaining flows have been marked by F1 (web pairs), F5 (messenger) and

F6 (gaming).
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Figure 2: TCP data vs trace times (1st row); Appl. breakdown by #conn. (2nd); Appl. break-

down by data carried (3rd)

IS V: In this intersection, flows are entirely unclassified by Perenyi. Since these flows are

classified as P2P by both Karagiannis and the proposed heuristics, there is no reason not to

consider them as P2P traffic.

IS VI: Perenyi’s ’long flow’ rule identified 77% of the data in this large intersection as P2P,

with the remaining connections classified according to known P2P port numbers. The proposed

heuristics on the other hand classify 88% of these flows as P2P by H2-H4, accounting for 72%

of data. Most of the data is even classified by 2 or 3 of the heuristics. The remainder (685 GB)

is classified by H5 (long flows) only, and will therefore be treated as a special category in our

results section. Karagiannis leaves a large part (60%) of this intersection unclassified, with the

rest classified by the non-P2P IP/Port Pair rule, which is an inaccurate rule for endpoints with

few connected hosts as noted above. Since there is no strong indication to rule out flows as false

positives, they are classified as P2P except for the 685 GB by H5 (long flows).

IS VII: Data in this intersection is classified as P2P by both Karagiannis and Perenyi, and

no false positives were identified by the proposed heuristics. Consequently, there is no reason

not to consider this intersection as P2P.

5 Classification Results

We finally applied the proposed heuristics to our data traces (Section 2). Fig.2 represents time

series of classified network protocols. The x-axis of the graphs represents time, with one bar

for each trace time (2AM, 10AM, 2PM and 8PM). Four traces on three days (07/04, 09/04,

23/04) had to be discarded due to measurement errors. The remaining whitespaces between

bars represent the 8 hour measurement break between 2AM and 10AM, which means that each

continuous block represents 4 traces collected in the order of [10AM, 2PM, 8PM, 2AM]. The
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first graph shows total amount of TCP data in GByte versus trace times. The second and third

row illustrate application breakdown for the particular trace in terms of connection numbers and

data volumes.

In the connection breakdown, only four categories are visible, since flows classified by H5

are too small in number to show up in this graph. Anyhow, these 31,000 long flows are re-

sponsible for almost 10% of the TCP data. Typically, these flows begin and end outside the

measurement period and transfer data between hosts, which do not generate additional traffic

on our links. Since our classification method is based on connection patterns, insufficient con-

nection numbers for a particular host reveal a weakness of this method. In the data breakdown

on the other hand, flows classified by F9 (attacks) are not visible. Even though attacks represent

between 8 and 60% of the flows, they carry less than 1% of the data on average. This also proves

the power of F9, since it effectively detects DoS attacks and network scanning, which typically

show up as short 1-packet flows only, carrying no payload data. P2P flows (flows matching

H1-H4, while not matching any of the false positive rules F1-F10) account for an average of

42% of the connections. On the other hand, they carry between 66 and 87% of the traffic, with

an average of 79%. This indicates once more the success of the heuristics, since P2P flows

are expected to carry more data on average than non-P2P flows. On this dataset, the proposed

heuristics left as little as 1% of the connections and 0.2% of the data unclassified (except the

flows classified by H5).

While a careful analysis of these results need to be done as future work, the short result

section should indicate the power and usefulness of the proposed heuristics.

6 Summary and Conclusions

This article proposes a set of heuristics for classifying backbone-type data according to applica-

tions. The proposed heuristics are intended to provide researchers and network operators with

a comparably simple1 method to get insight into the type of data carried by their links. Further-

more these heuristics work on traces as short as 10 minutes, which allows operators to classify

snapshots of their traffic relatively fast, by only adjusting applied thresholds and parameters

empirically. The heuristics can be used to classify backbone traffic according to a number of

applications, including P2P traffic, web traffic and other common applications. Furthermore,

we introduce a new rule that successfully identifies network attacks, which is an additional fea-

ture for network operators and researchers interested in network security or intrusion detection

issues. Some of the proposed heuristics are based on two existing methods. Besides relying

on the verification methods of these original heuristics, a careful analysis of the resulting clas-

sifications was carried out, pinpointing obvious cases of false positives. Both previous sets of

heuristics overestimate the number of P2P flows, mainly because attacking traffic is not taken

into account accordingly. On the other hand, both methods underestimate the amount of P2P

data on the links. By combining the successful rules of the two methods and adding new, nec-

essary rules, a set of refined and updated heuristics is presented. The heuristics are successfully

applied to a large collection of backbone data, yielding a valuable breakdown of applied appli-

1Simple, because it does not require packet payloads, updated payload signatures, and training data.
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cation protocols. When considering the few large flows classified by the H5 rule as P2P traffic,

the proposed heuristics leave only 0.2% of the data unclassified.
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Abstract

Identifying application layer protocols within network sessions is important when as-

signing Quality of Service (QoS) priorities as well as when conducting network security

monitoring. This paper introduces a Statistical Protocol IDentification algorithm (SPID)

utilizing various statistical flow and application layer data features. We have identified ap-

plication layer protocols by comparing probability vectors created from observed network

traffic to probability vectors of known protocols. Promising preliminary results are pre-

sented, showing average precision of 100% and recall of 92% for a small set of protocols

within traffic traces from an access network. To further improve the results, a number of

ongoing and future directions with SPID are discussed, such as optimization of the attribute

meters and improving robustness against different network environments.

1 Introduction

Today, there is an increasing need for reliable classification of network traffic according to ap-

plication layer protocols. Traffic classification is required for operational purposes, including

QoS and traffic shaping mechanisms, optimization of network design, and resource provision-

ing. Furthermore, understanding the type of traffic carried on networks facilitates detection of

illicit traffic, such as network attacks and related security violations. Modern firewalls, NATs

and IPSs need to be able to reliably identify network protocols in order to implement fine-

grained and secure access policies. Besides the apparent interest of operators and researchers

to understand trends and changes in network usage, there have been a number of political and

legal discussions about Internet usage (e.g. RIAA vs PirateBay), which further amplifies the

importance of accurate traffic classification methods.

Currently, there are roughly four approaches to classify network traffic according to ap-

plication protocols [1]. Traditionally, traffic was classified with sufficient precision by simply

looking at TCP/UDP port numbers. With the advent of P2P file sharing systems and their legal

implication due to copyright concerns, more and more applications started to use unpredictable

dynamic port ranges or reused well-known ports of other applications, which yields poor results

for port classification methods on modern network data [2, 3].
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Figure 1: Protocol identification data flow

This development led to a wide use of deep packet inspection (DPI) for classification, which

means inspection of packet payloads for known string patterns [4, 5]. DPI is currently the most

reliable way to classify traffic, which explains its popularity in commercial tools. However,

examination of (user) application layer data causes substantial legal and privacy concerns. Fur-

thermore, DPI with static signatures is resource-expensive and does not work on encrypted

traffic, which is becoming common as a reaction to legal threats.

As a result, the researchers began to work on classification techniques independent from

payload inspection. One such approach is to classify traffic based on social behavior of hosts by

looking at their connection patterns [6, 7, 8]. While some of these methods are quite successful,

they are only able to classify traffic in rough categories, such as mail, web, and P2P traffic.

Another recent, payload independent approach is classi-fication based on statistical flow

properties such as duration, packet order and size, inter-arrival times, etc. [9, 10].

In this paper we introduce SPID, the Statistical Protocol IDentification algorithm [11]. The

SPID framework is built to perform protocol identification based on simple statistical measure-

ments of various protocol attributes. These attributes can be defined by all sorts of packet and

flow data, ranging from traditional statistical flow features to application level data measure-

ments, such as byte frequencies and offsets for common byte-values. In this sense SPID is a

hybrid technique, utilizing efficient generic attributes, which can include deep packet inspection

elements by treating them in the same way as statistical flow properties. A proof-of-concept

(PoC) application for the SPID algorithm is available at SourceForge1.

2 SPID Design Goals

The main goal of the SPID algorithm is to reliably identify which application layer protocol is

being used in a network communication session in an easy and efficient fashion. SPID should

not only be able to classify traffic into rough, coarse-grained traffic classes (such as P2P or

web), but in fine-grained classes on a per-protocol basis, which would enable detailed QoS as-

signments and security assessment of network flows.

Many application layer protocol identification schemes used today rely on signatures or

patterns that usually occur in protocols, e.g. ’BitTorrent protocol’, ’SSH-’ or ’GET / HTTP/1.1’.

1http://sourceforge.net/projects/spid/
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A problem with looking for such static patterns is that the fingerprints need to be manually

created, which means that network traffic and protocol specifications need to be studied and

abstracted in order to create a reliable identification pattern. However, creation of application

layer signature patterns can be automated, as shown by Park et al. [12].

Several protocols use obfuscation and encryption in order to prevent identification through

static pattern-based signatures. Protocols that utilize such obfuscation techniques include the

Message Stream Encryption (MSE) protocol (applied e.g. by BitTorrent) and Skype’s TCP

protocol. Manually creating signatures for proprietary protocols lacking documentation - such

as Skype, Spotify’s streaming protocol and botnet command-and-control (C&C) protocols - can

be very troublesome.

An important design goal of SPID is therefore to replace the use of pattern matching tech-

niques with entropy based comparisons of probability distributions. Doing so eliminates the

need for manually extracting inherent properties of protocols, since the SPID algorithm has the

ability to automatically deduce properties from training data. The training data used, however,

needs to be pre-classified, which can be done through manual classification by experts or by ac-

tive approaches, as in Szabo et al.[13]. A further goal of SPID is to allow protocol models to be

updated easily as new training data becomes available, without having access to the previously

used training data.

The required manual efforts for adding a new protocol are thereby shifted from detailed

protocol analysis to assembling training data for that particular protocol. This is an important

change since manual creation of static protocol patterns is a time consuming task, and new

protocols continuously appear. Many new protocols are furthermore proprietary and undoc-

umented binary protocols, which require advanced reverse engineering in order to manually

generate protocol patterns.

The SPID algorithm does not require support for pattern-matching techniques, such as reg-

ular expressions. By providing a generic XML based format to represent protocol model fin-

gerprints, SPID is designed to be both platform and programming language independent.

Further operational key requirements for the algorithm are:

1. Small protocol database size

2. Low time complexity

3. Early identification of the protocol in a session

4. Reliable and accurate protocol identification

The motivation for requirements 1 and 2 are that it should be possible to run the SPID

algorithm in real-time on an embedded network device with limited memory and processing

capabilities. Requirement 3 should enable the use of the results from the SPID algorithm in

a live traffic capturing environment in order to provide QoS to an active session in real-time,

block illicit traffic or store related traffic for off-line analysis. An implicit goal is therefore that

protocols should be identifiable based on the first few packets with application layer data.
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Index 0 ... 80 (’P’) 81 (’Q’) 82 (’R’) 83 (’S’) 84 (’T’) ... 255

Counter vector 7689 ... 1422 502 1001 1482 2644 ... 3276

Probability vec. 0.026 ... 0.004 0.002 0.003 0.005 0.008 ... 0.011

Table 1: Example of an Attribute Fingerprint: Byte frequency for HTTP

Figure 2: Generation of protocol models

3 Overview of the SPID framework

As illustrated in Fig. 1, SPID performs protocol identification by comparing the protocol model

of an observed session to pre-calculated protocol models of known protocols.

3.1 Protocol Models

Protocol models contain a set of attribute fingerprints (Fig. 2). Fingerprints are created through

frequency analysis of various attributes, such as application layer data or flow features, and

are represented as probability distributions. The PoC SPID application uses over 30 attribute

meters2, which are the functions that provide the distribution measurements for each specific

attribute. An example of such an attribute meter is the basic ByteFrequencyMeter, which mea-

sures the frequency with which all of the possible 256 bytes occur in the application layer data.

Other attribute meters perform much more advanced analysis of various properties in a session,

such as measuring the frequency of various request-response combinations (e.g. HTTP behav-

ior, where a ’GET’ request is followed by an ’HTTP’ response or FTP behavior where a ’220’

message is replied to with a ’USER’ command). The SPID algorithm also makes use of flow

measurements (that do not require inspection of application layer data), such as packet sizes,

packet inter-arrival times and packet order number- and direction combinations.

Attribute fingerprints are represented in the form of probability distributions. This means

that the data for each fingerprint is represented by two arrays (vectors) of discrete bins: one array

of counter bins and one of probability bins (Table 1). Values of the counter vectors represent the

number of times an observation (analyzed packet) has caused the associated attribute meter to

trigger that particular index number in the vector. Probability vectors are normalized versions

2http://spid.wiki.sourceforge.net/AttributeMeters
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of the counter vectors, with all values in every probability vector summing up to 1.0. In this

paper a vector length of 256 is used; an implementation of the SPID algorithm can, however,

use any length for these vectors.

3.2 Generation of Protocol Models

For observed sessions, a protocol model is created upon session establishment (e.g. after the

TCP three-way handshake), consisting of a set of attribute fingerprints. Every packet with appli-

cation layer data belonging to a session is called an observation. Each such observation is then

fed into the attribute meters, which provide measurements that are stored in the session’s proto-

col model. Upon receiving such a measurement, the protocol model increments the fingerprint

counters accordingly. For illustration, we assume an attribute fingerprint for the ByteFrequen-

cyMeter from the first data packet observed in a HTTP session, i.e. a HTTP GET command.

The counters would be incremented to

• 3 for the counter at index 84 (since there are three T’s in ’GET / HTTP/ 1.1’)

• 2 for counters at index 32, 47 and 49 (space, ’/’ and ’1’)

• 1 for counters at index 71, 69, 72, 80 and 46

• 0 for all other counters

All other attribute fingerprints belonging to the same protocol model will also increase their

counters based on the sets of indices that are returned from their respective attribute meter.

Subsequent packets in the same session will cause the fingerprint counter values to further

increment. However, since one design goal of SPID is to keep time complexity low, we want to

show in future work that utilizing only the first few packets provides sufficient precision.

Protocol models for known protocols are generated from real network packet traces. These

traces need to be pre-classified, either manually or automatically [13], to be usable as training

data for the SPID algorithm. The pre-classified training data is converted to protocol model

objects (one per protocol) by generating protocol models for each session and merging (i.e.

adding) the fingerprints of the same protocol and attribute type.

The more sessions are merged together for each protocol, the more reliable the fingerprint

will be. As a rule of thumb, we found that 10% of the fingerprints’ vector lengths (i.e. approxi-

mately 25) turned out to be a rough measurement of the minimum number of training sessions

needed to build a reliable protocol model.

3.3 Comparison of Protocol Models

Fingerprints of an observed session are compared to fingerprints of known protocol models

by calculating the Kullback-Leibler (K-L) divergence [14] (also known as relative entropy)

between the probability distributions of the observed session and each protocol model, ranging

from 0 (identical distributions) to ∞. The K-L divergence is a value that represents how much

extra information is needed to describe the values in the observed session by using a code,

which is optimized for the known protocol model instead of using a code optimized for the
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session protocol model. The best match for an observed session is the attribute fingerprint

which yields the smallest K-L divergence according to Equation 1. Pattr and Qattr,prot represent

the probability vectors for a specific attribute of an observed session and of a known protocol

model respectively.

DKL(Pattr||Qattr,prot) =
∑

i

Pattr(i) ∗ log2
Pattr(i)

Qattr,prot(i)
(1)

Protocol models of observed sessions are finally compared to protocol models of known

protocols by calculating the K-L divergences of the models’ attribute fingerprints. The best

protocol match is the one with the smallest average K-L divergence of the underlying attribute

fingerprints. A good approach is to assign a threshold value, where only K-L divergence average

values below the threshold are considered matches. If none of the known protocol models

match, the session is classified as ’unknown’ in order to avoid false-positives for known models.

4 Preliminary Results and Analysis

For the following evaluation, the SPID Algorithm PoC application version 0.3 was used. The

SPID PoC application was set to only analyze the first 20 TCP packets in each session and used

a K-L divergence threshold of 2.25, which proved to be a good value after a series of empirical

tests. However, a thorough evaluation of the impact of the treshhold values is subject of our

future work.

We define a session as bi-directional TCP flows3 identified by the 5-tuple4. Furthermore, an

observed TCP three-way handshake (i.e. a SYN or SYN+ACK packet) followed by at least one

packet with application layer data is required to qualify as a session suitable for classification

by SPID.

The SPID PoC application is designed to only identify the application layer protocol in

sessions that satisfy the flow requirements described above. The SPID algorithm can, however,

be used to identify protocols in any communication scheme where there is a notion of a session,

i.e. a uni- or bi-directional flow. This implies that the SPID algorithm can also be used to

identify protocols that are transported or tunneled within other protocols such as UDP, HTTP,

NetBIOS, DCE RPC, ISO 8073 or even SSL. This generalized functionality is not yet included

in the SPID PoC application.

The training data for the protocol models is built from a collection of manually classified

TCP sessions from private sources as well as public sources, such as DEFCON 10 CCTF5,

Honeynet.org6, OpenPacket.org7 and pcapr8.

The validation data is a subset of a capture file provided by Szabo et al.[13]. This trace was

collected on an access link with capture length of 96 bytes, ie. 42 bytes of application layer

3A bi-directional flow consists of the data sent in both directions
4A set of: source IP and port, destination IP and port, and transport protocol
5http://cctf.shmoo.com/
6http://www.honeynet.org/scans/
7https://www.openpacket.org/
8http://www.pcapr.net/
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Protocol TS VS TP FN FP Precision % Recall % F %

BitTorrent 31 1245 1221 24 0 100.0 98.1 99.0

eDonkey 19 3535 2744 791 0 100.0 77.6 87.4

HTTP 101 1333 1293 40 0 100.0 97.0 98.5

SSL 73 30 26 4 0 100.0 86.7 92.9

SSH 43 2 2 0 0 100.0 100.0 100.0

Table 2: Validation results per protocol. The columns represent: Protocol identified; #Training

Sessions (TS); #Validation Sessions (VS); #True Positives (TP); #False Negatives (FN); #False

Positives (FP); % Precision; % Recall; and F-Number.

data. Since the sessions are pre-classified per client-side application, and applications might

use multiple protocols concurrently, additional port filtering helped to generate a validation

trace consisting of five TCP application layer protocols only:

• BitTorrent: Azureus sessions, excl. ports 80, 10000, 10010 (HTTP) and 27001 (version

check protocol)

• eDonkey: eMule sessions, excl. port 80 (HTTP)

• HTTP: Internet Explorer sessions, excl. port 443 (SSL)

• SSL: Internet Explorer sessions to port 443 (HTTP)

• SSH: PuTTY and WinSCP sessions

4.1 Validation Results

The results of SPID, with protocol models build from training data for these five protocols, are

summarized in Table 2. Following [15], Precision (or accuracy), Recall (or hit-ratio), and the

combined F-Measure are defined according to Equations 2 to 4, where TP, FN and FP stand for

True Positives, False Negatives and False Positives respectively.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F −Measure =
2 ∗ Precision ∗Recall

Precision+Recall
(4)

The results show that the SPID algorithm has the ability to perform very good identification of

HTTP and BitTorrent sessions, while performing less complete for eDonkey (78% recall). On

average, SPID yields the following results for the five protocols analyzed:

• Precision: 100.0% (no false positives)

• Recall: 91.9% (few missed sessions)

• F-Measure: 95.6% (combined measure)
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4.2 Analysis of the Results

The low recall for eDonkey is believed to be due to the limited number of training sessions (only

19) available for this protocol. A richer set of training data will likely provide better results.

However, eDonkey is known to be difficult to identify due to the very limited deterministic

application layer data. While many existing classifiers are prone to generate false positives for

eDonkey [16], SPID produces no false positives on the validation data with a KL divergence

threshold of 2.25.

Both BitTorrent and SSH are considered easy to identify using application layer data, since

they both start with static protocol banner strings [4, 17]. HTTP on the other hand is a more

loosely described protocol, allowing much more freedom in the implementation. The fact that

all HTTP traffic in the validation data stemmed from Internet Explorer traffic might explain

why SPID achieved such good results, since the used HTTP training data mainly stems from

web browsers. We would expect slighly lower recall if HTTP traffic from other applications

had been present in the validation data set, such as traffic from HTTP tunnelers or SOAP based

Web services.

5 Ongoing and future Work

Even though the current proof-of-concept application shows that SPID can successfully identify

network sessions of various protocols, there is still a lot of work to be done.

As a first step, additional protocol models will be created and tested in order to be able

to identify most modern Internet traffic. Besides the required training data for new protocol

models, existing models will be enhanced with diverse training data from different network

locations. It is therefore planned to get in contact with as many interested parties as possible

in order to accumulate a database with protocol models with enough natural variation. These

groups can include academic institutions, network developers, private individuals or any other

interested parties. Please feel free to contact the authors if you would like to contribute.

Another crucial step will be to develop an improved validation framework. Since publicly

available, pre-classified data as used in this paper (provided by Szabo et al. [13]) is very rare,

we plan to adopt a similar approach like Kim et al. [15]. We will pre-classify our own data

using an updated DPI method as introduced by Karagiannis et al. [6] in order to get a reference

point when evaluating the performance of SPID.

We then plan to empirically test the accuracy of different attribute meters compared to pre-

classified reference data. It is desirable to keep the number of attribute meters low in order to

reduce CPU and memory complexity, so we hope to obtain a reduced, optimized set of meters.

To each attribute meter we will provide recommendations, such as application protocols or

network environments where this specific meter turned out to be especially powerful.

After defining an optimal set of attribute meters, the robustness of this set is planned to be

tested against impact of the K-L divergence threshold and effects of different network envi-

ronments. Some attribute meters, such as those depending on packet payload, are expected to

perform similar in different environments. However, meters on flow features like inter-arrival

times might be less robust when applied on flows from backbone links with much higher line-
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speed compared to LAN links. Besides LAN and access link data, we will have the possibility

to test SPID on traces collected on 10Gbit/s backbone links [18].

Protocol identification on backbone links will, however, require some adjustments to the

current SPID application. As shown in [19], routing symmetry on highly aggregated links is

rare, which means that bi-directional flow data can no longer be assumed. Furthermore, attribute

meters disregarding packet payload will become more important, since payload inspection on

backbone links is often prohibited due to privacy concerns and legal implications.

6 Summary and Conclusions

In this paper we presented SPID, the Statistical Protocol IDentification algorithm. SPID is uti-

lizing various statistical packet and flow features in order to identify application layer protocols

by comparison of probability vectors to protocol models of known protocols.

Initial results have been obtained when identifying a small set of protocols within a pre-

classified set of flows collected on an access link. These results are very promising, showing

100% average precision with a recall of 92%. However, a number of interesting and relevant

future directions with this approach are discussed, such as optimization of the flow features

used or testing the robustness of the algorithm against different network environments, ranging

from LAN to backbone links.

We believe that SPID has the potential to become a simple and efficient classification al-

gorithm, providing accurate and fine-grained identification of network flows on application-

protocol level. This is important for operational purposes, such as network provisioning, as-

signment of Quality of Service (QoS) priorities and network security monitoring. Furthermore,

current discussions about legal aspects of P2P file-sharing applications add additional value to

accurate traffic classification methods such as SPID.
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