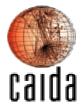
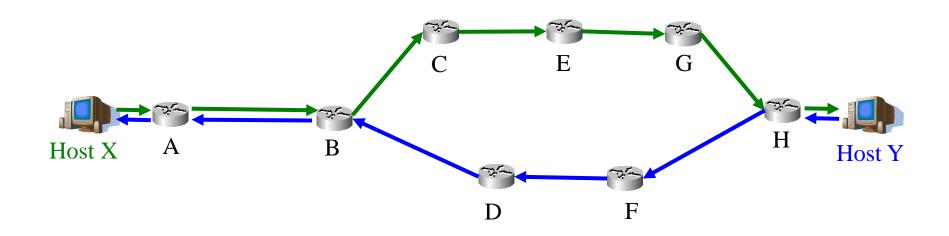
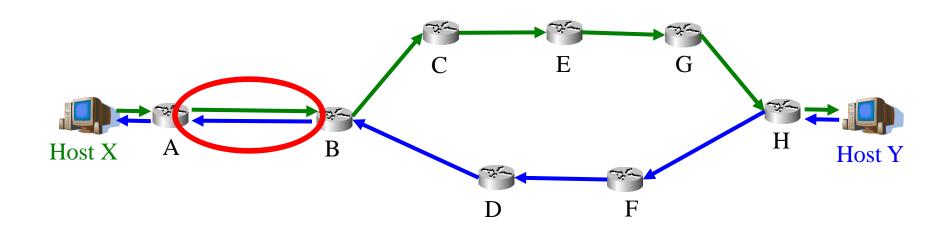
Wolfgang John
Chalmers University of Technology, Sweden


Maurizio Dusi Università degli Studi di Brescia, Italy

> kc claffy CAIDA, UC San Diego, USA





- Routing symmetry: End-to-End perspective
 - Asymmetric route between X and Y

X->Y via 6 hops: [A,B,C,E,G,H]

Y->X via 5 hops: [A,B,D,F,H]

- Routing symmetry: Single link perspective
 - Asymmetry on most links e.g. B->C, H->F...
 - BUT symmetry on link A<->B

- Passively collected flows: sequences of packets between endpoints
- We use CoralFlow on packet-level traces:
 - unidirectional flows
 - defined by 5-tuple {sIP,sPort,dIP,dPort,proto}
 - separated by timeout intervals
 - Symmetric flow: forward AND backward packets seen
 - Asymmetric flow: forward OR backward packets seen

- Traffic analysis and classification deals with flows collected at specific links
 - Symmetric traffic on a link = bidirectional flows
 - allows easier inference of sessions
 - offers additional feature-space for traffic classification (better classification results^[1])

Motivation

? Fraction of flows on a link observed symmetric?

- ! Well, this sounds easy...
 - ... but depends on traffic composition of the link:
 - Inherently asymmetric flows (UDP, ICMP)
 - UDP is dominated by single-packet flows^[2]
 - TCP background radiation
 - Scanning traffic can dominate in terms of flow numbers^[3]

[2] John et al. in PAM 2008

[3] Allman et al. in IMC 2007

Contribution

? So, how many flows are symmetric?

- ! We present ...
 - a method to assess flow-level symmetry,
 the Flow-level Symmetry Estimator (FSE)
 - a FSE tool based on CoralFlow
 - results of FSE on a diverse dataset
 - Impact of
 - inherently asymmetric traffic
 - observation interval
 - traffic granularity (only in paper)

Datasets

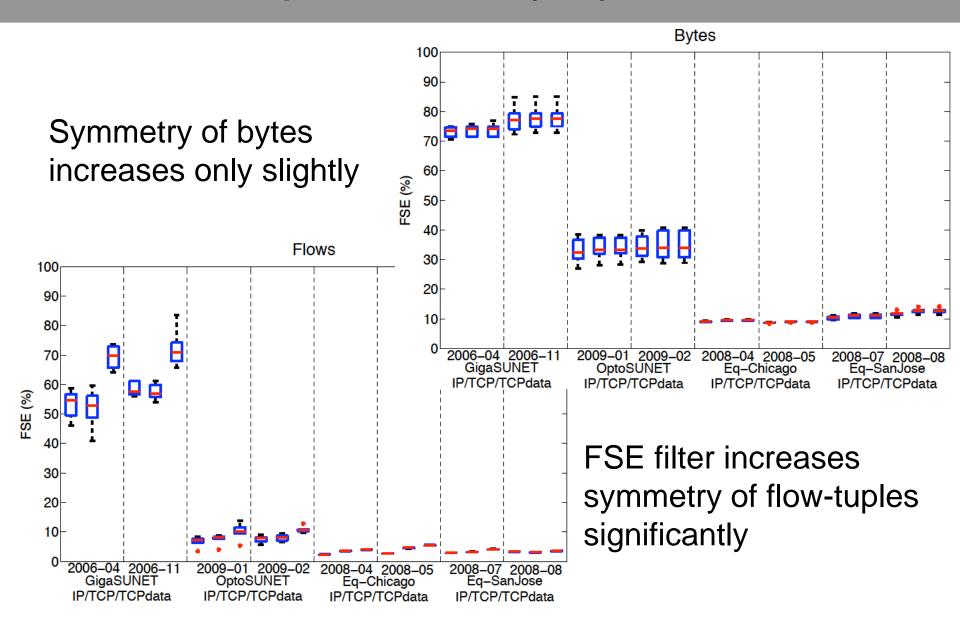
	Date	Length	#Flows	Location	
U-Brescia (Validation)	2009-12	2x10min	60 K	Access Link (100Mbps) Univ. Brescia, Italy	
CigoSUNET	2006-04		9 M	Tier 2 (10Gbps)	
GigaSUNET	2006-11	6x10min	16 M	Sweden	
OptoSUNET	2009-01	OX TOTTIII	57 M	Tier 2-Tier 1 (10Gbps)	
	2009-02		62 M	Sweden	
Eg Chicago	2008-04		119 M	Tier 1 (10Gbps)	
Eq-Chicago	2008-05	1x60min	134 M	Illinois-Washington	
Eq-SanJose	2008-07	IXOUIIIII	145 M	Tier 1 (10Gbps)	
	2008-08		139 M	California	

Method: Flow-based Symmetry Estimation (FSE)

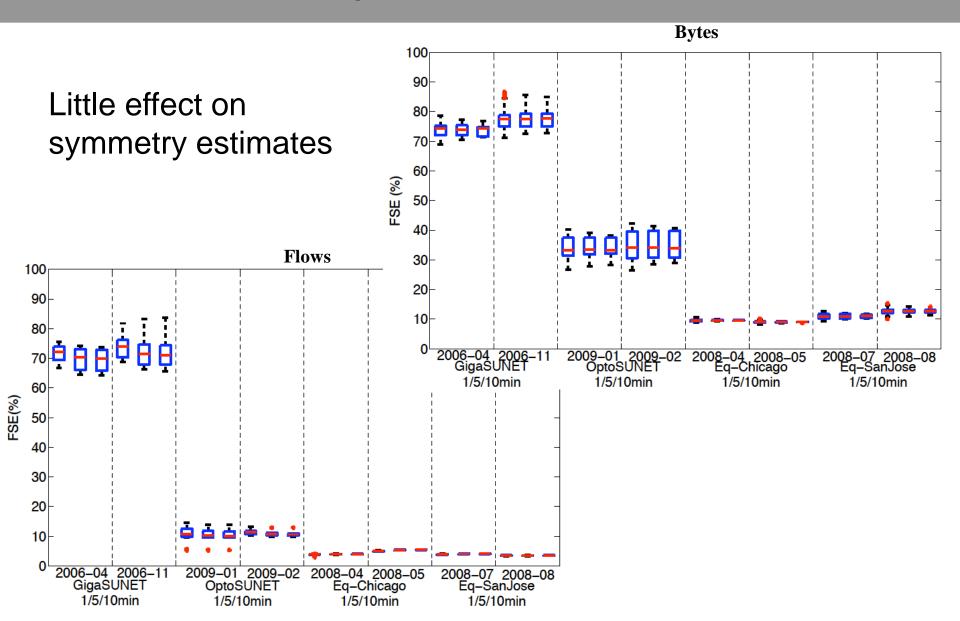
```
    given a time interval of traffic trace
    consider TCP data traffic only
    T<sub>f</sub> (T<sub>b</sub>) = set of tuples going forward (backward)
    T<sub>f</sub> ∧ T<sub>b</sub> = set of symmetric tuples T<sub>s</sub>
    packets (bytes) in T<sub>s</sub> = set of symmetric packets (bytes)
```

TCP data traffic =

TCP traffic without signaling flags, but with ACK


- Disregarding non-TCP traffic
 - TCP is guaranteed bidirectional (=symmetric)
 - TCP is responsible for majority of traffic volume
- Filtering out TCP signaling traffic (SYN/FIN/RST)
 - TCP Background radiation is mainly SYN probing
 - Established, valid connections have data or ACK packets in both directions

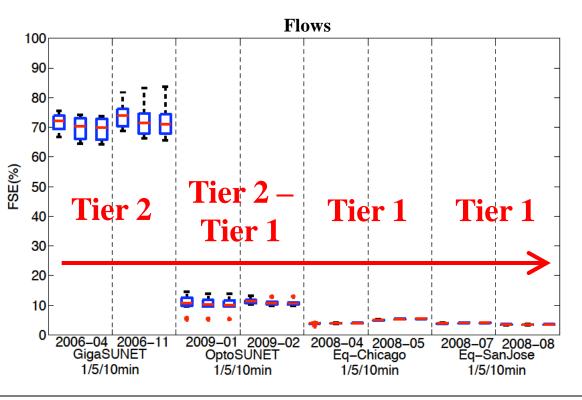
FSE: TCP Background Radiation


- TCP Traffic removed by FSE method
 - = estimate of background radiation

TCP signalin	g traffic	% flows	% packets	% bytes
GigaSUNET	2006-04	32.36	4.85	0.15
Gigasonei	2006-11	27.86	1.95	0.15
OptoSUNET	2009-01	34.81	2.05	0.08
Optoberner	2009-02	34.74	2.05	0.09
Eq-Chicago	2008-04	19.19	5.60	0.51
Eq-Officago	2008-05	23.62	4.31	0.34
Eq-SanJose	2008-07	25.27	8.04	0.83
Eq-panjose	2008-08	19.41	7.75	0.78

Results: Impact of Inherently Asymmetric Traffic

Results: Impact of Observation Interval



Results: Impact of Observation Interval

Bytes

2 further observations:

- Symmetry estimates are stable (within minutes and months)
- Symmetry estimates decrease radically closer to the core

Results: Summary of FSE

	Date	Non Flov	-TCP vs	TCP Radiation	Location	Symm. All IP	Symm. TCP data
U-Brescia (Validation)	09-12		57 %	16 %	Access Link	79.0 %	98.6 %
GigaSUNET	06-04		58 %	32 %	Tier 2	54.6 %	70.0 %
GigaSUNET	06-11			27 %		57.7 %	71.0 %
OptoSUNET	09-01		80 %	35 %	Tier 2-Tier 1	7.1 %	10.2 %
OPIOSONE I	09-02			35 %		7.8 %	11.7 %
Ea Chianga	08-04		50 %	19 %	Tier 1	2.4 %	4.0 %
Eq-Chicago	08-05			24 %		2.7 %	5.5 %
Ea San Josa	08-07		50 %	25 %	Tier 1	2.9 %	4.1 %
Eq-SanJose	08-08			19 %		3.3 %	3.6 %

Results: Summary of FSE

	Date	Non-TCP Flows	TCP Radiation	Location	Symm. All IP	Symm. TCP data
U-Brescia (Validation)	09-12	57 %	16 %	Access Link	79.0 %	98.6 %
GigaSUNET	06-04	58 %	32 %	Tier 2	54.6 %	70.0 %
GigaSUNET	06-11	56 %	27 %		57.7 %	71.0 %
OptoSUNET	09-01	80 %	35 %	Tier 2-Tier 1	7.1 %	10.2 %
OPIOSOINE I	09-02		35 %		7.8 %	11.7 %
Ea Chiango	08-04	50 %	19 %	Tier 1	2.4 %	4.0 %
Eq-Chicago	08-05		24 %		2.7 %	5.5 %
Ea San Jose	08-07	FO 0/	25 %	Tier 1	2.9 %	4.1 %
Eq-SanJose	08-08	50 %	19 %		3.3 %	3.6 %

Results: Summary of FSE

	Date	Non-TCP Flows	TCP Radiation	Location	Symm. All IP	Symm. TCP data
U-Brescia (Validation)	09-12	57 %	16 %	Access Link	79.0 %	98.6 %
GigaSUNET	06-04	58 %	32 %	Tier 2	54.6 %	70.0 %
GigaSUNET	06-11	56 %	27 %		57.7 %	71.0 %
OptoSUNET	09-01	80 %	35 %	Tier 2-Tier 1	7.1 %	10.2 %
OPIOSONE I	09-02		35 %		7.8 %	11.7 %
Ea Chicago	08-04	50 %	19 %	Tion 1	2.4 %	4.0 %
Eq-Chicago	08-05		24 %	Tier 1	2.7 %	5.5 %
Ea San Jose	08-07	50 %	25 %	Tier 1	2.9 %	4.1 %
Eq-SanJose	08-08		19 %		3.3 %	3.6 %

Summary

Analysis often done on flows from one location

– Can we see symmetric (bi-directional) flows?

We proposed:

- A method: Flow-based Symmetry Estimation (FSE)
 - Utilizing on common tool (CoralReef)
 - Disregarding inherently asymmetric traffic
 - Normalized metric allows fair comparison
- Results: Symmetry assessments from a large, diverse dataset

Conclusions

- Traffic normalization (filtering) is important for flow-symmetry assessment
 - Exclusive access link may be considered asymmetric
- FSE is robust against different flow definitions
 - 1, 5 and 10min timeout intervals
 - Timeout-based and signaling-based flows (see paper)
- Traffic granularity has an effect (see paper)
 - IP Pair flows result in higher FSE's than 5-tuple flows
- Symmetry is quite stable (minutes to months)
- Symmetry radically decreases with link 'coreness'

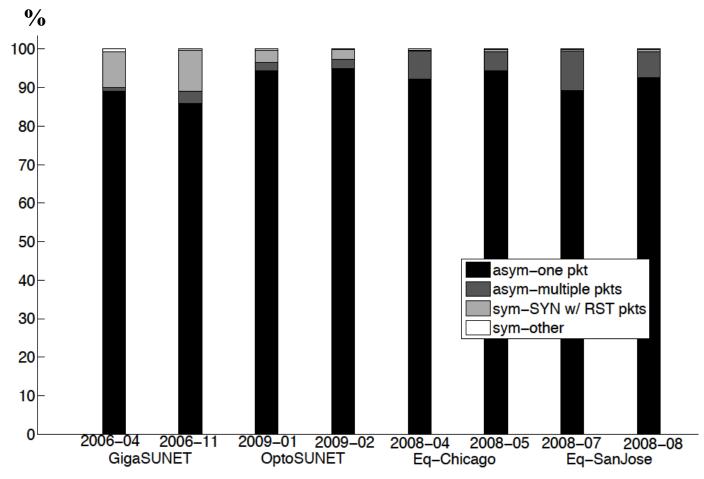
Analysis methods should NOT assume symmetric flows (except on exclusive stub access links)

FSE (Flow-based Symmetry Estimation) Tool: http://www.cse.chalmers.se/~johnwolf/FSE

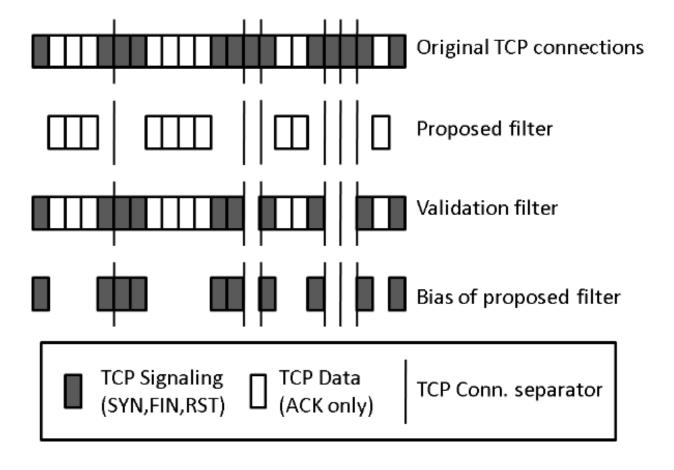
Contact:

http://www.chalmers.se/cse/EN/people/john-wolfgang johnwolf@chalmers.se

Backup Slides



FSE: Characteristics of TCP Background Radiation


Background radiation indeed mainly asymmetric

(Results from Validation method, details in paper)

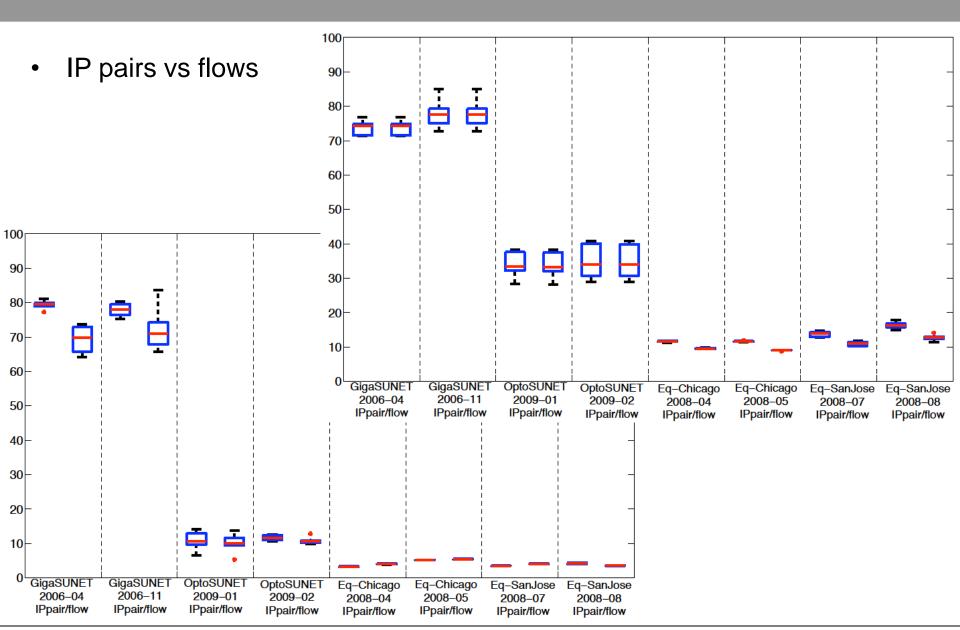
FSE: Filter Bias

Bias in terms of packet/bytes numbers

FSE: Bias on Estimates

Quantified in numbers

Eq-Chicago 2008-05


Packets

	Sym.	Tot.	$\mathrm{Sym}.\%$
V	47.2M	469.8M	10.05%
F	45.7M	455.5M	10.04%
Diff.	1.5M	14.3M	

Bytes

	Sym.	Tot.	Sym.%
V	39.4G	433.6G	9.09%
F	39.3G	432.5	9.09%
Diff.	0.1GB	1.1G	

Results: Impact of Traffic Granularity

