Implementation and Evaluation of a Carrier-grade
OpenFlow Virtualization Scheme

Pontus Skoldstrom
Acreo Swedish ICT AB
Kista, Sweden
pontus.skoldstrom @acreo.se

Abstract— Software Defined Networking (SDN) concepts are
seen as suitable enablers for network virtualization, especially in
the Data Center Network domain. However, also carrier network
operators can benefit from network virtualization, since it allows
new business models, promising economical benefits through
sharing the cost of network infrastructure in e.g. multi-tenancy
or service-isolation scenarios. Such use-cases pose additional
requirements on virtualization schemes, including strict perfor-
mance and information isolation, transparency of the virtualiza-
tion system, high availability, as well as low CAPEX and OPEX
demands. In order to fulfill these requirements, we previously
proposed a flexible virtualization scheme for OpenFlow. In this
paper we discuss the implementation of the proposed scheme and
point out relevant lessons learned during the process, leading
to architectural and technological updates. We then evaluate
the system in terms of data path performance: the impact on
forwarding latency is negligible, while the impact on network
throughput is depending on the type of traffic and the choice of
encapsulation technology. In summary, the overhead can be kept
small and would not significantly affect a production network.
Thus, we conclude that the minor performance degradations are
outweighed by the benefits of the virtualization system.

I. INTRODUCTION

Software Defined Networking (SDN) describes a networking
concept which decouples network control from forwarding -
two critical networking functions, that have traditionally been
interleaved in monolithic network elements with distributed
control planes. In SDN, network state and intelligence is
moved to a logically centralized control plane, and the actual
per-hop forwarding decisions are programmed on the data
plane elements by the remote control plane via open interfaces,
most prominently OpenFlow. At the same time, the centralized
control plane presents an abstracted view of the network to any
type of control program or application using the network. By
exposing a common API to abstract the underlying networking
details, SDN enables easy programmability, automation, and
network control. This opens up opportunities for network
innovation through creation of new applications and services
in software, i.e. decoupled from hardware restrictions.
OpenFlow, originally developed by researchers and Stanford
and now marshalled by the Open Networking Foundation
(ONF), emerged as the most prominent interface between data
plane elements and SDN controllers [1]. OpenFlow switches
consist of flow tables containing flow entries that are used to
identify the incoming packets and make forwarding decisions

Wolfgang John
Ericsson Research
Kista, Sweden
wolfgang.john @ericsson.com

based on matching the incoming traffic against the predefined
rules. Flow tables are statically or dynamically configured
by the controller via OpenFlow messages transported over a
secure channel. These OpenFlow messages are specified by the
OpenFlow protocol, being used for configuration of OpenFlow
switches, management of OpenFlow tables, and retrieval of the
flow table state and capabilities of the switches.

Besides the promised benefits of SDN itself (i.e. ease of
operation, increased service and innovation velocity), carrier
network operators also recognized the possibilities of SDN to
enable network virtualization [2], thereby following a trend
that has been ongoing in data center networks for a while
already. Virtualization of operator networks opens up for new
business model promising economical effects by sharing the
cost of network infrastructure, used for e.g. multi-tenancy or
service-isolation scenarios [3]. However, existing techniques
such as VLANSs, Virtual Routing Forwarding (VRF) and vari-
ous Virtual Private Network (VPN) approaches solve network
virtualization only partially. Advanced use cases, such as a
multi-tenancy scenario enabling virtual network operators on
top of a single physical networking infrastructure, pose at
least the following requirements on a virtualization scheme:
(i) strict isolation between virtual networks, in terms of a) net-
work performance (e.g. bandwidth); and b) information, thus
preventing explicit information leakage (e.g. eavesdropping of
packets, etc.) and implicit, indirect information leakage (such
as topology or policy information); (ii) operational isolation by
providing a transparent virtualization system, allowing tenants
unrestricted choice of protocols, labels, address spaces, etc.;
(iii) minimal additional OPEX and CAPEX demands, such as
the possibility to realize the system in software, thus avoiding
additional or specialized hardware requirements; and (iv) full
integration to the existing architecture and software realization
of SDN without the need to introduce additional elements (e.g.
middleboxes) in order to avoid single-points of failures and to
limit additional administrative burdens.

In order to fulfill these requirements, we proposed a flexible
virtualization scheme for OpenFlow in [4], [5]. After a short
recap of this scheme in section II, we will discuss the
implementation of the system and point out relevant lessons
learned during this process in section III. We evaluate the
system in terms of performance impact in section IV, and
finally conclude the paper in section V.

OpenFlow Switch

Network Virtual network 1 Network
Operator Operator
Table Table L _» Table
Z 2 n Packet
X
Packet
In Virtual network 2
|| Decap
Virtual network n
. o
AN Table Table Table
n+1 n+2 [> 2n

Fig. 1: Conceptual model [4]. Packets are de- and encapsulated
in the first and last table, resp. In between, they pass through
a set of flow tables reserved for a particular virtual network.

II. CONCEPTUAL MODEL

We introduced the conceptual model (see Fig. 1) in [4], where
we proposed to create virtual networks through two means:
packet encapsulation on the links; and partitioning of flow
tables in the switches. On the links some type of encapsulation
(we suggested MPLS tunnels) is used to differentiate packets
belonging to different networks, without setting any restric-
tions on what address spaces are supported by a particular
virtual network. In the switches, a number of flow tables
would be reserved for a single virtual network. Once a packet
enters a switch, the encapsulation would determine to which
set of flow tables in the OpenFlow pipeline the packet should
be sent. Before forwarding the packet to those tables, the
encapsulation would be removed. A virtual network customer
would be limited to only be able to view and access the tables
corresponding to his virtual network, the packets seen by the
customer (and the assigned flow tables) would seem as if they
had not been virtualized (since the encapsulation has been
removed). The customer could then manipulate the packets
in his virtual network using the assigned tables. Before the
packets are sent to the next hop they are encapsulated once
again. The network operator would configure the switches, in
particular the first and last table, using an OpenFlow controller.
Once configured, customers can connect to the switches using
their own OpenFlow controllers which would only see the
tables and ports reserved for a particular virtual network. This
model is particularly suited for multi-tenancy use-cases by
fulfilling the requirements defined in section I:

i) Isolation in terms of strict bandwidth limits can be en-
sured using normal QoS tools. Information isolation, i.e.
the risk for information leakage or packet injection into
another virtual network is minimized by encapsulation.
Transparency is ensured by encapsulating packets be-
tween switches. There are no restrictions on the address
spaces assigned to the virtual network customers, they
may for example use the same IP or VLAN address space
without colliding. This is crucial since it removes any
need to negotiate between customers concerning who uses
which identifier or adapt control software.

iii) The model can be implemented through simple software/-

firmware upgrades to the switches, no additional devices
or hardware modifications are necessary.

As the translation functionality is distributed to all
switches, the impact of failures is reduced. At the same
time, the main intelligence of the system resides in the
virtualization manager as controller application, in line
with the SDN/Openflow paradigm.

iv)

Our approach fulfills all requirements posed by the multi-
operator use-case, while FlowVisor [6] schemes, common in
current literature, typically cannot fulfill req. ii and iv.

III. IMPLEMENTATION

During the SPARC project! we developed a proof-of-concept
implementation of the model based on OpenFlow version 1.1
[7]. While successful, we had to update the model in certain
aspects as we faced some issues during the implementation.

A. Data plane model

A detailed view of the implemented data plane model can
be seen in Fig. 2. The first table is used to assign traffic to
virtual networks depending on the type of port the packet
packet arrives on: a customer port or a shared port>. In the
case of a customer port some filtering may be performed
before forwarding the packet, on a shared port the VLAN
encapsulation will always be removed before forwarding. Once
forwarded to a set of customer tables the customer may apply
any matches or actions it wishes, there are no restrictions, even
the use of groups and packet in/packet out via the controller is
unrestricted. Once the final customer flow table or group has
been passed the packet is forced to go through a per-port per-
customer group that reapplies the encapsulation and assigns a
queue depending on the outgoing port and virtual network. If
the outgoing port is a customer port, this final group is skipped
and the packet is forwarded directly to the port. At the port,
QoS queues are used to apply per-customer QoS restrictions
that prevents any customer from using more that its assigned
share of bandwidth. Queuing here may be skipped if it is not
demanded by the use-case, e.g. multi-service scenarios at a
single operator might not require strict bandwidth allocation.
The flow tables and groups that form the virtualization
system, or belong to other customers, are completely hidden
from a connected customer controller. The customer only
“sees” the assigned flow tables and ports, as well as the groups
that the customer himself creates. Responsibility of enforcing
this view as well as making sure that de-/encapsulation is
performed correctly, etc., is split between the translation unit
located on the switch and an application at the network owners
controller, what we call the virtualization manager.

B. Translation unit

The translation unit is configured by a virtualization manager

application, using the experimenter extensions of OpenFlow
'www.fp7-sparc.eu
2 A customer port is a port directly connected to a customer network, while a
shared port is a link carrying packets belonging to multiple customers (similar
to access and trunk ports in VLAN terminology).

Virtualization, Customer| |Customer

| manager | controller | | controller

LT TT T 1 2

| Operator | —%x % __

I controller 1 '

Eataind Satutuls OpenFlow 1.1 capable switch
L v _ ___¥_ ____ |
! 1
k*‘***>: Translation unit | F---- -
! [S 1
v : v 5

Incoming Virtualization Customer Customer Virtualization Isolation | Outgoing
ports table tables groups groups queues | ports

Ctmzﬂwﬁ% VLAN J—> NULL j—>{] T[] i@ Customer
ports ! S port

VLAN
| Remove |

Shared m/’ NV
o S e S

VLAN 1717

Shared
ports

Fig. 2: The implemented data plane model: Elements in solid lines represent a standard OpenFlow 1.1 switch; Elements in
dashed lines represent additions needed to implement the virtualization scheme.

1.1. Tt is responsible for translating incoming and outgoing
OpenFlow messages (think of it as a single switch FlowVisor
[6]). This is done in order to provide a restricted virtual view,
only showing the correct tables, groups, and statistics as well
as enforcing that the connected controllers are only able to
program the intended tables, etc. The virtualization manager
adds virtual networks to a translation unit by sending a
ADD_VN message, see Fig. 3. The ADD_VN message configures:

o A virtual network identifier, an encapsulation identifier,

and a queue identifier.

o Ranges of the flow- and group tables that are assigned to

the virtual network.

o Lists of assigned customer- and shared ports.

With the ADD_VN information available it is fairly straight-
forward to implement a translation unit that filters and modifies
incoming and outgoing OpenFlow messages.

For example, when a customer controller requests a list
of all available ports using a OFPT_FEATURES_REQUEST
message the translation unit examines the assigned port infor-
mation for the virtual network assigned to the asking controller
and discovers that the actual ports, e.g. {3,6,8}, are shared
ports that are assigned to the particular virtual network. The
port information for {3,6,8} is fetched and translated to virtual
identifiers {1°,2°,3’} before replying to the request. Simple
translation like this can quickly be applied to most of the
OpenFlow messages with little programming effort in order
to show only the appropriate information whether it concerns
translating to/from actual/virtual identifiers for ports, flow- or
group tables.

Similarly, commands from customer controllers need to be
modified. For example a OFPT_FLOW_MOD command requires
translation of the virtual flow table identifier and modification
of both the Match and Action list. In the Match, e.g. the
Incoming port may have to be updated in order to refer to
a physical instead of virtual port identifier. Any Actions in the
Action list has to be inspected, any group identifiers must be
modified as well as outgoing ports. In order to enforce that the
encapsulation is reapplied, any customer actions sending pack-
ets to a port are converted into actions forwarding the packet

the appropriate group that has been setup for encapsulating
and forwarding the packet to the physical port.

Simple translation of the relevant identifiers (ports, flow
tables, groups, etc.) is enough in most cases. This simplicity
result in our proof-of-concept implementation being a patch
of only about 2000 lines to the original OpenFlow 1.1 switch
implementation, a fairly minor modification (the original size
is near 50000 lines). However, there are some fields that
are more complicated to deal with appropriately, for example
the buffer identifier in the OFPT_FLOW_MOD message. Our
implementation handles these in a very naive fashion, so a
more robust implementation would need to be slightly larger.

C. Virtualization manager

The virtualization manager runs as an application on top
of an OpenFlow 1.1 NOX controller, representing the con-
troller of the operator owning the physical network. It not
only configures the translation unit on all switches, but also
configures their first table (table 0, the virtualization table),
the encapsulation groups, and the per-port per-customer QoS
queues. It obtains the information about which virtual net-
works should be configured, and how, by reading a configu-
ration file containing the networks topologies and per virtual
network configuration. In the future, advanced configuration
management such as datapath configuration synchronization,
global coherence checks, etc. would reside here as well.

struct ofl_exp_add_vn {
struct ofl_exp_msg_header header;
uint32_t virtual_network_id;
uintl6_t encapsulation_id;
uint32_t queue_id;
uintlé6_t flow_table_range[2];
uint32_t group_table_range[2];
uint32_t n_shared_ports;
uint32_t n_customer_ports;
uint32_t shared_portsl[];
uint32_t customer_ports([];

bi

Fig. 3: Experimental message ADD_VN for adding a virtual
network to the translation unit.

Configuration of the virtualization table currently includes
setting up rules for either forwarding packets directly from a
port to a customer table, or decapsulating the packet before
forwarding it. The virtualization groups are created with
a unique group identifier derived from the virtual network
identifier and virtual identifier of the physical port they are
forwarding to after re-encapsulating packets. The particular
group identifiers are necessary for the translation unit; the
translation unit needs to derive the same group identifiers
whenever it replaces a customers OFPAT_OUTPUT action with
a OFPAT_GROUP action. This is done in order to forward
packets via a virtualization group responsible for reapplying
the encapsulation before the packet is forwarded to the actual
physical outgoing port.

Finally, we need to be able to authenticate and associate
connecting controllers to corresponding virtual networks. In
a more mature implementation, this could be done with
PKI certificates also used for setting up SSL connections.
We instead simply added a secret value to the OpenFlow
handshake process. If this value matches a virtual network
identifier, the controller is assigned to that network. For the
Operator controller, which has no virtual network associated,
a specific secret value is used to grant full access.

D. Lessons learned

In our original design we focused on MPLS tunnels as the en-
capsulation format. They seemed to be a suitable encapsulation
technology, primarily because of their ability to be stacked.
However, if the packet that you want to encapsulate does not
already have an MPLS label, you would have to modify the
EtherType of that packet to indicate that the packet is now an
MPLS packet. This requires that if MPLS labels are used, we
must use multiple labels per virtual network, since we need
one label per virtual network/EtherType combination in order
to be able to set the correct, original, EtherType on the packets
when we remove the MPLS label.

The extra complexity of managing multiple labels, poten-
tially one for each defined EtherType per virtual network, led
us to reconsider VLAN tagging instead of MPLS labelling.
Since VLANs can be stacked without limit in OpenFlow
1.1 without modifying the original packet, they turn out to
be a good replacement. However, VLANs have limitations,
primarily the amount of available identifiers (12 bits) might
make VLANS tricky to use in an environment where they are
already used for other purposes, e.g. identifying services.

Since any encapsulation format that does not modify the
original packet is suitable, we also investigate encapsulation
using Ethernet Pseudowires over MPLS (PWE), which we had
implemented earlier in OpenFlow 1.1 [5]. While Pseudowires
add significantly larger overhead, they can be used together
with the MPLS OAM that we adapted to OpenFlow during the
SPARC project. This allows us to set up end-to-end protected
LSPs that can carry our PWE encapsulated virtual links,
providing sub-50ms rerouting of virtual networks.

The original design also contained a encapsulation table re-
sponsible for re-applying the encapsulation. This was changed

to groups since it is much simpler to implement, you only
need to rewrite the output actions. In the encapsulation table
case you are required to track where packets have been before
arriving at the final table, e.g. by using the metadata fields.
This becomes quite complicated and requires an extra table
lookup, something avoided when using groups.

IV. EVALUATION

After verifying that the implementation works properly we set
out to evaluate its performance. We expect that the introduction
of the virtualization system will impact two aspects of the
OpenFlow switch, the control channel as well as data plane
forwarding performance.

The control channel performance (i.e. latency of OpenFlow
commands) is affected by the addition of a translation unit in
the switch, since it has to inspect and modify OpenFlow mes-
sages. However, due to the simplicity of these operations we
expect the increased processing time to be on a timescale not
measurable at a client controller, especially when compared to
latencies in the control network itself>.

Performance loss in the data plane on the other hand is
critical and any performance losses here could be detrimental
to the viability of the virtualization solution. Therefore, our
performance evaluation focuses on the performance of the data
plane implementation and we do not evaluate the performance
of the OpenFlow control channel or the virtualization manager.

On the data plane level we are primarily concerned about
two things. First, the penalty induced on forwarding latency
introduced by decapsulation/encapsulation at each hop com-
bined with the extra steps taken within the switch, traversing
the virtualization table and groups. The second aspect is
the throughput penalties induced by adding encapsulation,
which we analyze based on typical packet size distributions in
Internet traffic.

A. Latency impact of data plane encapsulation

In order to measure per-hop data plane processing costs of
the virtualization system (using multiple tables and packet tag-
ging/encapsulation), we constructed a setup in which packets
are sent over a large number of hops before having their RTT
measured. By comparing the difference in RTT for different
configurations we hope to be able to detect differences in
their performances. However, in order to reduce the noise
in delay variations (i.e. jitter) caused by network interfaces,
etc., we run each OpenFlow switch as a process on a single
server and connect the switches using virtual interfaces. This,
combined with applying a Linux kernel optimized for low
latency (Linux-RT) dramatically reduces measured jitter.
However, as a consequence of this setup we expected that
the difference in processing time for the different scenarios
would be too small to detect if we only send our probe packets
through a single node. Therefore we devised a looping setup

3Note that this is not necessarily the case for other virtualization methods,
esp. the FlowVisor approach. A separate FlowVisor adds not only extra
processing time, but also transmission delay to due at least one extra hop
in the control network before the OpenFlow message reaches the switch.

®

@ Multicast & Forward
/ dec.TTL packet
Source l >4 S3 T
& Sink
A Y s1 P)
~
@* Forward . Forward
packet @ packet

Fig. 4: Experimental setup, consisting of a ring of OpenFlow
switches circulating the packet injected by the host. 1) Packet
is injected by the host, 2) packet is forwarded until it reaches
S4, 3) S4 multicasts the packet to the host and to switch S1
after decrementing the TTL, 4) the host captures the packet.

that allows us to flexibly scale the number of hops in order to
increase the cumulative processing time, hopefully making it
large enough to be measurable.

Our forwarding loop, which can be seen in Fig. 4, is made
up of four OpenFlow switches (S1 to S4) controlled by a
NOX controller running the virtualization manager responsi-
ble for configuring the switches for the different scenarios.
The experiment was executed on an 8-core server running
a Linux-RT kernel. We further pin each OpenFlow switch
process to a dedicated core in order reduce jitter even more.
Once the virtualization scheme in the switches has been
configured appropriately, a customer controller connects to the
virtual switches. The customer controller configures the virtual
switches to forward incoming packets through the ring.

To initialize the experiment, the server injects a single [CMP
ping packet to S1, which starts forwarding the packet through
the ring. In order to allow multiple observations of the packet
at source/sink, S4 is configured with an OpenFlow multicast
group, not only forwarding a copy of the packet onward
through the ring (i.e. back to S1), but also forwarding a copy
to the second interface to the source/sink. To stop the packet
from looping endlessly the TTL is decremented at S4, causing
the packet to be dropped after a configurable number of loops.

For our measurements, this setup ensures that the
source/sink is responsible for both injecting and receiving the
packet, thus avoiding any possible time-synchronization issues
between two separate source and sink hosts. The inter-arrival
times of packets observed at the host thus represent the time
it takes to traverse four data path elements and five links.

We ran the experiment with five configurations in order to
test two different encapsulation formats (VLAN/PWE) and the
effects of queuing for bandwidth isolation (-Q). We compare
the results with a baseline setup without virtualization, i.e.
with native OpenFlow 1.1 switches (Base). In the experiments,
the operator controller configures the virtualization scheme,
after which a customer controller connects and configures
the loop forwarding/multicasting which is identical regardless
of any configuration of the virtualization. For each of the
configurations we collected roughly half a million inter-arrival
samples, which are summarized in Table I and Fig. 5.

0.9+ .
0.8+ |

__07¢ ,

) —+——Base

o 0.6-

kel VLAN

a

2o 0.5¢ —H=—PWE 1

i 0.4l VLAN-Q

e PWE-Q
0.3+ .
0.2+ .
0.1+ ‘ § ,

0 . ‘

90 100 110 120 130 140 150 160 170
Per hop delay [us]

Fig. 5: CDF plots of the per-hop latency for the different
measured configurations, Base is without virtualization, -Q is
with encapsulation and QoS queuing.

Statistic | Base | VLAN | PWE | VLAN-Q | PWE-Q

Minimum (us) 77 87 87 74 85
Maximum (us) 344 727 698 504 871
Median (us) 105 110 114 117 118
Median (rel. inc.) — +5% +9% +11% +12%

TABLE I: Statistics of the per-hop latency for the configura-
tions, the last line shows the relative increase of the median.

We can see that the per hop latency is increased by a
few microseconds as we use more complex virtualization
with VLAN and PWE alone adding 5 and 9 microseconds
respectively. When QoS queuing is included the added latency
compared to without QoS is almost doubled (4-7 microseconds
extra). The absolute difference in latency, e.g. 12 microseconds
in the case of the baseline (Base) compared to VLAN with
QoS queuing (VLAN-Q), indicates an upper limit to the
latency overhead, assuming that actual hardware implementa-
tions would perform better than our software implementation.
The relative difference, roughly a 11% increase in per hop
delay in the VLAN-Q case, seems to be a significant cost.
However, this is in an ideal scenario without any link delay,
no queuing on the interface, or other sources of latency. The
extra latency is in the scale of a few microseconds per hop,
which in the end makes is negligible even for paths with many
hops, given that one-way delays usually are in the millisecond
range (i.e. three orders of magnitude larger).

We conclude that while there is a small per-hop delay over-
head due to the virtualization scheme (including encapsulation,
virtualization- tables and groups, and QoS queuing), it does not
add significant latencies to end-to-end delay, which is typically
dominated by transmission delays orders of magnitude larger.

B. Throughput impact of data path encapsulation

Encapsulation does not only impact the processing delay,
but also effective throughput in the virtual networks due to
additional header overhead. Traffic analysis on data from
backbone and enterprise networks [8], [9] shows that Internet

Encapsulation Header Overhead

Average Packet Size | VLAN (4 Byte) \ PWE (26 Byte)

(min) 40 bytes 10.0% 65.0%
(mixed) 700 bytes 0.6% 3.7%
(max) 1500 bytes 0.3% 1.7%

TABLE II: Overhead introduced by VLAN and PWE encap-
sulation for minimal (40 bytes), full (1500 bytes), and typical
average packet sizes (700 bytes).

traffic consists mainly of minimal sized packets just at or
above 40 bytes (such as TCP ACK packets, consisting of
headers only) or maximum sized packets according to the
standard Ethernet MTU of 1500 bytes. This bimodality in the
packet size distribution typically yields an average packet size
between 500 and 900 bytes on links with a diverse traffic mix,
often around 700 bytes [10].

In Table II we summarize the relative overhead caused by
the proposed encapsulation formats (VLAN tagging and PWE)
on traffic mixes with varying packet size distributions. For traf-
fic consisting of small packets, PWE encapsulation obviously
introduces an unacceptable high header overhead, resulting
in reduced effective throughput for virtual networks. Even
for typical Internet traffic, the extra virtualization overhead
by using PWE is non-negligible. We conclude that VLAN
tagging is the preferable choice of encapsulation, especially
for traffic scenarios including small and medium sized pack-
ets. However, in some cases simple VLAN tagging is not
sufficient, either due to scalability reasons® or the need for
advanced features such as protection, a common requirement
in carrier network. Regardless of the choice of encapsulation
technology, further potential effects on end-user performance
need to be considered, such as packet fragmentation or packet
drops caused by exceeding the network MTU due to the extra
header overhead. However, these considerations concern all
encapsulation techniques, and can be mitigated by appropri-
ate MTU configuration and mechanisms such as Path MTU
discovery.

V. CONCLUSIONS AND FUTURE WORK

We have described the implementation of an OpenFlow vir-
tualization scheme designed to support carrier-grade network
environments, in particular, multi-tenancy use-cases. By plac-
ing the hypervisor/translation functionality inside the switches,
our virtualization scheme achieves inherently better availabil-
ity compared to centralized solutions. The scheme can be
implemented by two simple modifications: firstly, a minor
software update to the OpenFlow message processing part
of a switch, thus keeping the hardware unchanged; secondly,
a simple experimental extension to the protocol itself. For
virtual network customers, the virtualization system is com-
pletely transparent and no changes are required to either
control software or addressing schemes. Not only were we
successful in implementing the system, but our evaluation
shows that the benefits introduced by the systems outweigh
the minor performance degradation. Data path performance in

4VLAN supports 4096 virtual links, which could potentially be a limit.

terms of additional forwarding latency is negligible with both
implemented encapsulation mechanisms. However, depending
on packet size distribution and the encapsulation mechanism,
throughput can be impacted significantly.

As future work, we believe it could be benefitial to apply
the scheme to the latest OpenFlow version (currenlty 1.3
[11]), especially to investigate the possibilities of even stricter
bandwidth isolation using new QoS tools, such as meters, in
the virtualization table. Results could show whether current
QoS mechanisms are sufficient or not [6]. Another future
study item would be scalability considerations of the system
in terms of flow tables, group tables, and meters. These
discussions depend heavily on the use-case in question as
well as upcoming Openflow hardware implementations. As
discussed in [4], there are various possibilities when it comes
to the placement of the translation unit in an SDN architecture.
In our implementation, it is located between the OpenFlow
protocol and the OpenFlow software instance on the switch.
It would be interesting to investigate the impact of moving the
translation unit closer to the forwarding hardware, placing it
between multiple OpenFlow software instances running on a
switch and the forwarding hardware. This may further simplify
the implementation and provide stricter isolation on the control
channel level in a switch.

ACKNOWLEDGMENT

This work was funded by the EU FP7 project SPARC. The
authors would like to thank all SPARC partners for discussions
and comments, in particular Manxing Du and Alisa Devlic.

REFERENCES

[1] Open Networking Foundation (ONF).
/Iwww.opennetworking.org/

[2] The SPARC consortium. EU FP7 Project SPARC: Split Architecture for
carrier grade networks. [Online]. Available: http://www.fp7-sparc.eu/

[3] M. Forzati, C. Larsen, and C. Mattsson, “Open access networks, the
Swedish experience,” in Transparent Optical Networks (ICTON), 2010
12th International Conference on. 1EEE, 2010, pp. 1-4.

[4] P. Skoldstrom and K. Yedavalli, “Network virtualization and resource
allocation in openflow-based wide area networks,” in Proceedings of
SDN’12: Workshop on Software Defined Networks. 1EEE ICC, 2012.

[5] The SPARC consortium, “Deliverable D3.3: Split Architecture
of Large Scale Wide Area Networks,” 2012. [Online]. Avail-
able: http://www.fp7-sparc.eu/assets/deliverables/SPARC_D3.3_Split_
Architecture_for_Large_Scale_Wide_Area_Networks.pdf

[6] R. Sherwood, G. Gibb, K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Flowvisor: A network virtualization layer,”
OpenFlow Switch Consortium, Tech. Rep, 2009.

[Online]. Available: http:

[7] Open Networking Foundation (ONF), “Openflow
switch specication version 1.1.0” 2011. [Online].
Available: https://www.opennetworking.org/images/stories/downloads/

sdn-resources/onf-specifications/openflow/openflow-spec-v1.1.0.pdf
[8]1 W.John, Characterization and classification of internet backbone traffic.
Disseration, Chalmers University of Technology, 2010.
[9] D. Murray and T. Koziniec, “The state of enterprise network traffic in
2012,” in Asia-Pacific Conference on Communications (APCC), 2012.
CAIDA: The Cooperative Association for Internet Data Analysis. Trace
statistics for caida passive oc48 and oc192 traces. [Online]. Available:
http://www.caida.org/data/passive/trace_stats/

(10]

[11] Open Networking Foundation (ONF), “Openflow
switch specication version 1.3.1” 2012. [Online].
Available: https://www.opennetworking.org/images/stories/downloads/

sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf

